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Abstract 

High performance on Java applications running on server and desktop machines requires fast execution of Java 
bytecodes. Such performance can be achieved by Just-In-Time (JIT) compilers, which translate the stack-based 
bytecodes into register-based machine code on demand. But one crucial problem in Java JIT compilation is the 
compilation time, which increases the total execution time of an application. So it is necessary to reduce the JIT 
compilation time as much as possible. In this paper we propose a front-end hardware compilation pipeline that 
performs the compilation of bytecodes into native machine code on-the-fly in hardware and pass the compiled code to a 
backend native processor for execution. The bytecodes are translated into three-address intermediate representation 
form, by mimicking the stack operations, before performing a series of optimizations in hardware. The optimized three-
address codes are used for code generation and architectural register allocation and then placed in a cache for execution 
by the backend native processor. A micro-architecture of hardware compilation pipeline is presented.  
 
 
1  Introduction 

 
The Java bytecodes are generated for a stack machine, 
and the Java Virtual Machine (JVM) is responsible for 
the execution of bytecodes by interpreting them into 
native machine codes, or directly executing them on a 
hardware Java processor. Executing Java bytecodes over 
the JVM layer on a native platform is many times slower 
than the native code equivalent directly running on the 
same platform.  
Server and desktop Java applications demand high 
performance and currently rely on software JVM Just-In-
Time (JIT) compilers to execute the Java bytecode 
equivalent on a native processor. The JIT compilation 
time itself is a part of the applications execution time and 
contributes to slowness. It is therefore important to 
reduce the compilation time as much as possible for 
applications that require high performance. Hardware 
JVM implementations have been shown to perform 
several times faster than the software JVM 
implementations[7]. However, the current 
implementations of JVM in hardware, known as Java 
processors, do not provide high the performance 
demanded by server and desktop applications, and they 
are mostly targeted for embedded applications. This 
requires a trade-off between the compilation-time and 
execution-time of high-performance applications, which 

poses a challenging research problem in Java bytecode 
execution. 
This paper introduces a hardware compilation pipeline, a 
front-end pipeline that takes Java bytecodes as input and 
generates optimised native code on-the-fly for the 
backend native processor. The bytecodes are translated 
into an intermediate representation form followed by a 
series of simple optimisations in hardware and then the 
generation of native code. The instruction-fetch unit of 
the native processor for execution then fetches the native 
code. There are three main stages in our pipeline:- 
translation stage, optimisation stages, and code 
generation stage. The translation stage converts the 
decoded Java bytecodes into three-address intermediate 
representation. Next, a series of simple machine-
independent and machine-dependent optimisations are 
performed. The machine-independent optimisation 
includes common sub-expression elimination, copy 
propagation, constant propagation, peephole 
optimisations, and strength reduction. The machine-
dependent optimisations include register allocation, 
placement of software prefetch instructions in the native 
code, method invocation based on calling convention of 
the native processor, delay-slot code scheduling etc., The 
optimisation algorithms are carefully chosen to be linear 
in space and time, so that it is feasible for implementation 
in hardware. The unit of fetching and compiling by the 
front-end pipeline is limited to a basic block of Java 
bytecodes, due to limitation on hardware resources as 



well as timing constraints imposed by on-the-fly 
compilation. The front-end pipeline relies on the native 
processor for null pointer checking, array bound 
checking, and divide-by-zero exception handling.  
The rest of the paper is organized as follows. Section 2 
briefly reviews the related work on Java Virtual Machine 
implementation, in software and in hardware, and the 
motivation for the hardware compilation pipeline. A 
detailed description of the proposed hardware 
compilation pipeline architecture is given in Section 3. 
Section 4 presents the simulation environment, and 
Section 5 concludes with the future work. 
 
2  Related Works 

The JVM specification is flexible and permits either 
software or hardware implementation of the JVM, 
provided the execution of the bytecodes follows the  Java 
specification [13]. The   Fig. 1  shows the various ways 
in which the JVM may be implemented. 

Fig. 1. Executing Java bytecodes. 

 
2.1  Software approaches to JVM 

implementation 

2.1.1  Interpreter 

The simplest form of JVM implementation on a native 
platform is as an interpreter program that understands the 
Java bytecodes and simulates their execution on the 
native platform, e.g the Kaffe interpreter [15]. The Java 
compiler generates bytecodes for JVM that is essentially 

a stack machine.  Writing interpreter for the code 
generated for a stack machine is simple, however the 
interpreters are severely affected by the performance due 
to variables need to be pushed into the stack for 
performing operation on them. A study in [3] reports that 
48.3% of bytecodes are data-movement instructions. 
Hence most of the interpreter's time is spent on 
interpreting such instructions. Even with the latest 
advanced superscalar processors, the interpretation speed 
does not meet the performance requirements of many 
Java applications. 
 
2.1.2 Offline bytecode compiler 

The static compilation of Java bytecodes into native 
instructions can be performed prior to execution; 
examples of this approach are J2C[16] and Turbo J [17]. 
The advantage of this approach is that sophisticated code 
generation and optimisation techniques can be applied. 
However, the platform-independence feature of  Java is 
lost when programs are compiled to native instructions. 
Hence this approach is not suited for network computing 
environment, but for homogeneous environment. 
 
2.1.3  Just-In-Time (JIT) compiler 

JIT compilers compile a Java method into native 
instructions on-the-fly and then cache the native code for 
future reference; examples of this approach are 
HotSpot[18], Kaffe JIT[15], IBM JIT[10] and Latte 
JIT[9]. The performance gain here comes from directly 
executing the native code on  a processor, instead of 
simulating the bytecodes in software. The compilation 
itself should be fast, since the compilation time adds up 
to the total execution time of Java application. In order to 
cut down the compilation time, extensive optimisations 
are not performed, and the JIT compilers are limited to 
simple and fast optimisation algorithms.  
 
2.2  Hardware approaches designing Java 

processors 

The hardware implementations of JVM which are known 
as Java processors, perform better than the software JVM 
implementations, because the bytecodes are directly 
executed as native instructions in hardware. There are 
two ways of implementing Java processors; stack-based 
Java processors and bytecode-to-native translator or 
compiler Java processor pipelines. 
 
2.2.1 Stack processor 

The JVM is a virtual stack machine, and implementing it 
in hardware is straightforward if the JVM instruction set 



forms the native language of the stack processor. 
Registers are not used; instead, a high-speed hardware 
stack is implemented over a set of registers that acts as a 
stack. The pipeline of a typical stack processor is similar 
to that of a conventional register machine, except that the 
register-access stage is replaced by a stack-access stage 
and the registers are replaced by a stack [1] [8]. The main 
disadvantage of the code running on a stack machine, 
relative to a register machine, is that, because of stack 
dependency, less instruction level parallelism can be 
exploited. Also, more data movement operations are 
needed to move the data from the local variables to the 
stack for the execution of an instruction. 
 
2.2.2 Instruction Folding 

A group of Java bytecodes can be combined into a single 
operation and then issued by a Java processor for 
execution, a process known as folding. Contiguous Java 
bytecode instructions that have true data dependencies 
are grouped into a single compound instruction. This is 
done by appropriate folding hardware. Sun Microsystems 
introduced such a folding stage in its picoJava-II 
processor pipeline [1].  
 
2.2.3  Nested Folding 

An improved version of folding, which can detect nested 
folding patterns, complex state machine that can 
recognize the such patterns and then issue folded 
instructions, is proposed in [4]. 
 
2.2.4  Translator   

When the bytecodes are translated into two-address or 
three-address instructions and executed by the RISC 
pipeline, the performance will be higher than the folding 
stack processor or JIT compiler running on a native 
processor [2]. This approach has the advantage of 
eliminating the need to design a complete processor from 
scratch. Also, legacy applications and the operating-
system support already existing for the native processor 
is readily available, with the additional capability of 
supporting Java language directly in hardware. Such a 
translation processor was proposed in [2], the register 
allocation and the optimisations are not emphasized. 
JEDI technologies JSTAR accelerator and FaRM Java 
co-processor are translators which share the resources of 
the back-end native processor. 
 
2.2.5  Hardware compiler 

In [5] - the authors proposes an instruction-level-parallel 
architecture for Java processor in which the hardware 

translates the bytecodes to RISC-like primitives during 
the instruction cache miss or a page miss, stores these 
primitives in a cache or memory, and later optimises and 
issues them to a superscalar pipeline. This is similar to 
the AMD K5 processor, which translates the x86 
instructions to RISC primitives and then issues them out-
of-order. The optimisation and scheduling are carried out 
in software by JIT. A complete hardware compilation in 
hardware is feasible, as mentioned in many papers [6] 
[5], but there no known implementation or a complete 
design of such a Java processor exists.  
 
2.3  Motivation 

The code generated for the JVM lacks many possible 
optimisations, because of the postfix representation form 
of bytecodes. The virtual stack dependency created by 
the stack operations does not allow the exploitation of 
instruction-level-parallelism available in the code. The 
JIT compilers depend on simple and fast algorithms for 
optimisation and code generation to cut down the 
compilation time. Typically, a JIT compiler that optimises 
the bytecode has to access various internal data structures 
of the JIT compiler to generate the native code; this will 
take hundreds of processor cycles; however, these 
algorithms when implemented in hardware will consume 
only a  few processor cycles to generate native code but 
will boost the performance of bytecode execution in 
hardware. Most of the compilation algorithms are fairly 
simple and can be implemented in hardware. The postfix 
representation of bytecodes can be easily translated into 
three-address representation by the use of semantic stack 
(known as the Mimic Stack)  [9] [11]. Most of the 
optimisations on the three-address intermediate 
representation form require searching for a pattern. The 
searching can be performed in hardware, by an 
associative search operation, on the three-address 
intermediate representations stored in a content-
addressable memory (CAM). The searching operation 
when performed in hardware takes O(n) due to parallel 
search possible in CAM, but when the same search is 
performed in software it takes O(n2), because of the 
sequential search. The CAM size plays an important role 
in the hardware optimisations. To determine the 
approximate size of CAM we studied the average size of 
basic blocks in SpecJVM98 applications. This revealed 
that 90% of the basic blocks are less than 32 bytecodes.  
All of the above points and the need for a processor 
which can execute the legacy code as well as Java 
bytecodes motivated us to design a high performance 
Java pipeline which compiles the bytecodes into native 
code on-the-fly 



3 Architecture of Hardware 
compilation pipeline 

The translation of Java bytecodes to native codes in 
hardware can accelerate the compilation time by reducing 
from few hundreds to few tenths of cycles. The main 
reasons for the speedup are the possible optimisations 
and their implementation in hardware. The architecture of 
a hardware-compilation pipeline requires very little 
software support and greatly differs from the 
conventional pipeline, since the purpose of the pipeline is 
to compile the bytecodes rather than execute them. The 
compilation pipeline acts as a front-end pipeline that 
compiles the bytecodes into native code and passes the 
result it to a native backend pipeline. 
 
3.1  Pipeline Architecture 

The proposed hardware compilation pipeline essentially 
consists of five stages, as shown in Fig. 2. 

Fig. 2. Architecture of hardware compilation pipeline. 

After initial bytecode-fetch and decode, the decoded 
bytecodes are translated into an intermediate 
representation form that facilitates various optimisations. 
The translation stage allocates virtual registers when 
generating the intermediate code. These virtual registers 
are latter mapped into architectural registers in the code 

generation and register allocation stage. The optimisation 
stage is a series of shorter stages that perform various 
machine-independent and machine-dependent 
optimisations on the intermediate representation before 
generating the native code. The optimisation stages 
follow one after the other in an order that will benefit the 
following optimisation stages. For example, the common 
sub-expression elimination (CSE) optimisation, 
introduces more temporary variables while eliminating 
the sub-expressions. Performing the copy-propagation 
optimisation following CSE removes the unnecessary 
move instructions generated during CSE optimisation.  
The generated native codes are then passed to the 
backend native processor for execution. Runtime 
informations, such as execution  PC and branch 
prediction information, are collected from the backend 
native pipeline and used for the efficient compilation of 
the bytecodes into their native-code equivalent. 
 
3.2 Micro-architecture of pipeline stages 

3.2.1  Fetch stage 

In order to perform compilation, a basic block is fetched 
first. The software collects the basic-block information, 
such as start and end bytecode PC and the information of 
the following basic block, from a method and stores it in 
the Basic Block Table (BBT) of the fetch control logic, as 
shown in Fig. 3.  

Fig. 3. Fetch stage. 

If the last bytecode in the basic block happens to be a 
branch bytecode, then there are two possible following 



basic blocks. Java ISA does not allow static branch 
prediction information to be embedded in the branch 
bytecode instruction, which can cause the miss penalty to 
be high unless if nothing is done about it. Furthermore, 
our front-end pipeline increases the backend pipeline 
depth by additional stages for processing the Java 
bytecodes. In order to reduce the prediction miss penalty, 
we construct the branch history information in BHT by 
tracking the native PC from the backend pipeline, using a 
native PC-to-bytecode PC mapping table (PC2BPC). 
Using this information, only the potential basic block 
following the current is fetched for hardware 
compilation. When there is no branch history information 
available, both paths of the branch instruction are fetched 
for compilation. The method is loaded in the virtual 
memory by the class loader and the native virtual address 
required to access the method's code is stored in the MVA 
register (Method Virtual Address) of fetch-address 
generation logic. The bytecode address within a method  
pointed by BPC (Bytecode PC) register, starts from zero, 
pointed by BPC (Bytecode PC) register, of the fetch 
address generation logic. The MVA register contents 
added with the BPC register contents forms the bytecode 
fetch address, as shown in the fetch address generation 
logic. 
 
3.2.2  Decode stage 

The size of a JVM instruction varies from one byte to 
several bytes; this complicates the decoding logic and 
complex bytecode also need software support in 
decoding. The decoding stage components are shown in 
Fig. 4.  

Fig. 4. Decode stage. 

The input bytecode stream is stored in a shift register for 
decoding. The first bytecode in the stream is used to 
index into the bytecode information table, to access the 
attributes associated with that bytecode. The attributes 
includes the type of operation, the size of the bytecode, 
how the stack will be modified by this bytecode, whether 
trap into software is needed for this bytecode, the index 
into local variable and constant pool available in the 
bytecode stream, object reference, etc. Using the size 
information, the input bytecode stream is shifted to 
access the next bytecode. The decoded bytecodes are 
passed for translation through a decode FIFO buffer. 
 
3.2.3  Translation stage 

The Translation consist of four major components:-  the 
Mimic Stack Manager (MSM), the Mimic Stack, virtual 
register allocator, and the three-address code generator, 
these are shown in the Fig. 5. 

Fig. 5. Bytecode to three-address code translation stage. 

The translation stage uses the mimic stack to transform 
the bytecodes to three-address intermediate 
representation. The main difference between the mimic 
stack and the Java processor stack is that in the mimic 
stack register numbers (virtual or symbolic registers), 
rather than the contents of the registers are used. The 
MSM coordinates the translation process by 
communicating with the mimic stack, virtual register 
allocator, and the three-address code generator. The 
MSM uses the decoded Java bytecodes and its attributes 



to mimic the operation on the mimic stack. Two types of 
virtual registers are allocated based on temporary stack 
variable or local variables are allocated using the 
counters SVcnt and LVcnt, respectively. Whenever the 
same variable is referenced again in the bytecodes, the 
mapping table returns the previously allocated virtual 
register number.  Once the mimic stack manipulation is 
over, the three-address code generator pops the mimic 
stack contents and the three-address code is generated. 
Following the translation stage, the three-address code is 
optimised. The first optimisation performed is common 
sub-expression elimination since the postfix 
representation of bytecodes does not eliminate common 
sub-expressions. This optimisation can be performed in 
the translation stage itself by using a Content 
Addressable Memory (CAM) to store the three-address 
codes. By doing a CAM search before adding an entry on 
the CAM could detect the common sub-expressions. The 
result register of a matching CAM entry is pushed again 
into the mimic stack for to allow reuse of the result of the 
sub-expression, and the code for the redundant sub-
expression is deleted.  Fig. 6 shows a sample Java 
program with common sub-expressions and Fig. 7 shows 
the equivalent bytecode, the mimic stack manipulation by 
the translation stage, and the native code generated by the 
common sub-expression elimination optimisation. 
 
class dag { 
     public static void main(String[] args) { 
       int a=5,b=6,c=7,d=8,e=9; 
       a = (a+b) + (((a+b)-c)*(d+e)) * ((((a+b)-c)*(d+e))-e); 
              ------       ------------------       -------------------- 
     } 
   } 

Fig. 6. Java code with sub-expressions 

Bytecode Native  code Mimic Stack 
-------------- int a=5,b=6,c=7,d=8,e=9; ---------------  
0 iconst_5   5 
1 istore_1 mov 5, r1    
2 bipush 6 
4 istore_2 mov 6, r2 6  
5 bipush 7  
7 istore_3 mov 7, r3 7 
8 bipush 8    
10 istore 4 mov 8, r4 8 
12 bipush 9  
14 istore 5 mov 9, r5 9 
------------ (a+b) ------------------ 
16 iload_1   r1 
17 iload_2   r1, r2 
18 iadd  add r1,r2,t1 t1 
----------  (((a+b)-c)*(d+e)) -------------  
19 iload_1   t1, r1 

20 iload_2   t1, r1, r2 
21 iadd   t1, r1, r2, + CAM Match 
    t1, t1(pushed) 
22 iload_3   t1, t1, r3 
23 isub  sub t1,r3,t2 t1, t1, r3 
    t1, t2  
24 iload 4   t1, t2, r4, 
26 iload 5   t1, t2, r4, r5 
28 iadd  add r4,r5,t3 t1, t2, t3  
     
29 imul  mul t2,t3,t4 t1, t4 
------------  (((a+b)-c)*(d+e))-e ----------- 
30 iload_1   t1, t4, r1 
31 iload_2   t1, t4, r1, r2 
32 iadd   t1, t4, r1, r2, + CAM Match 
    t1, t4, t1(pushed) 
33 iload_3   t1, t4, t1, r3  
34 isub   t1, t4, t1, r3, - CAM Match 
    t1, t4, t2(pushed) 
35 iload 4   t1, t4, t2, r4 
37 iload 5   t1, t4, t2, r4, r5 
39 iadd            t1, t4, t2, r4, r5, + CAM Match 
    t1, t4, t2, t3(pushed) 
40 imul   t1, t4, t2, t3, * CAM Match 
    t1, t4, t4(pushed) 
41 iload 5   t1, t4, t4, r5 
43 isub  sub t4,r5,t5 t1, t4, t5 
-----  (((a+b)-c)*(d+e)) * ((((a+b)-c)*(d+e))-e) ----------- 
44 imul  mul t4, t5, t6 t1, t6 
--- (a+b) + (((a+b)-c)*(d+e)) * ((((a+b)-c)*(d+e))-e) ------ 
 45 iadd  add t1, t6, t7 t7 
-a = (a+b)+ (((a+b)-c)*(d+e)) * ((((a+b)-c)*(d+e))-e)----- 
46 istore_1 mov t7, r1 EMPTY STACK 
447 return 
 
Fig. 7.  Common Sub-expression Elimination during 
three-address code generation. 
 
When the three-address code generated for a basic block 
exceeds the size of the CAM, the CSE optimisation is 
limited to the CAM size. The optimisation is not 
performed for common sub-expressions across a span 
that exceeds the CAM size, and partially optimised three 
address codes are generated in such cases.  A study 
revealed that 90% of the basic blocks are less than 32 
bytecodes, and  so a 32 or 64 entry CAM is sufficient at 
translation stage. 
 
The three-address code CAM is shown in the Fig. 8. Its 
operation is as follows the instruction and the source 
operands are checked for a match. Commutative 
operations, such as multiplication and addition, allows 
the operands to be interchangeable. In order to handle the 
commutative operations, the search is performed once or  



twice - first with the given operand order and then again 
if the first search does not match in the CAM and the 
operator has commutative property with the order of 
operands reversed. To perform the CSE optimisation a 
search against all preceding three-address codes is 
required; this is accelerated by hardware through  parallel 
search and consumes only one cycle. Additional logic to 
detect if the result register is modified in-between is not 
shown in the figure. 

Fig. 8. Three-address code CAM. 

The iinc bytecode is a special instruction; it is the only 
instruction that directly operates on the memory, i.e. local 
variables, without the need to push the local variable on 
to the stack. The handling of such a non-stack operation 
among of all stack operations is slightly tricky when we 
use the mimic stack. Because the mimic stack uses the 
register reference and not the contents, if a bytecode 
sequence that pushes a local variable content into the 
stack is followed by iinc instruction which directly 
operates on the local variable, there will be a data 
inconsistency between the stack and the local variable in 
memory; this is perfectly legal, as the bytecode operation 
following the iinc instruction consumes the earlier value 
from the stack. But when using the register reference for 
mimic stack, a search should be performed on the mimic 
stack to see if the local variable is in use in the mimic 
stack; if so a copy of the local variable should be made 
and the value then incremented. 
 
3.3.4  Optimization stages 

The optimisation stage is a series of specialized 
optimisation sub-stages in sequence. The optimisations 
can be classified as machine-dependent or machine-
independent, as shown in the Fig. 9. It should be noted 

that CSE optimisation is performed during the translation 
stage, when the intermediate three-address codes are 
generated. The CSE optimisation introduces many 
redundant move operations which need to be eliminated 
before any other optimisation, in order to conserve space 
in the three-address CAM buffer, as well as other 
intermediate holding buffers in the following stages. The 
copy propagation optimisation eliminates redundant copy 
operations and is therefore placed as the first 
optimisation stage. 

Fig. 9. Optimisation stages. 

The other optimisations include strength reduction, which 
replaces an operation with its equivalent simpler 
operation e.g. a multiplication by 2 can be replaced by 
either addition operation to itself or by the left shift 
operation in case of integer operands. There are several 
possible machine-dependent optimisations. Software 
prefetch instructions can be embedded in the native code 
at appropriate places can reduce the load stall created in 
the backend pipeline [19]. The other optimisation 
includes  delay slot scheduling, with the delay slot 
instruction filled from the branch target code. The 
optimised codes are placed in the buffers that are finally 
accessed by the code generation stage to produce the 
native code. 
 
3.3.5  Code generation and Register allocation 

stage 

 In the code generation stage, the optimised three-address 
codes are converted into native codes by allocating 
architectural registers.  The architectural registers replace 
the virtual registers allocated in translation stage. The 
temporary stack registers are given priority over local 



variable registers for architectural register assignment. 
The difference between the translation stage register 
allocation and the architectural register allocation is that 
spill/fill codes are generated if there are no architectural 
registers left for allocation This is one reason for 
combining the register allocation with code generation. 
The calling convention of the native processor is taken 
care while generating code for method calls.  The register 
allocation is done in two phases:- during the translation 
stage and during the code generation stage. The 
architectural register allocation, the virtual-to-
architectural register mapping, and the code generation 
logic are shown in the figure 10. 
 

Fig. 10. Code generation and Register allocation stage. 

In the translation stage register allocation, the depth of 
the mimic stack is monitored at the end of each basic 
block. If the mimic stack in not empty, its contents are 
explicitly spilled into designated memory locations, by 
generating equivalent three-address codes. The situation 
where a variable is pushed and a branch is taken leaves 
the mimic stack non-empty at the basic block end. For 
example, x = (x>y)?x:y; generates such non-empty stacks 
at the end of the basic block. In the code generation 
stage, the spill/fill of registers occurs when there is not 
enough architectural registers available for allocation. A 
virtual-to-architectural register mapping table keeps track 

of the allocation mapping is referenced before allocating 
a new architectural register.  
Using the three-address opcode to index into the 
instruction template store, which holds the native 
instruction template (i.e., opcode part with the unfilled 
register slots), does the code generation. The unfilled 
register slots are filled into the template after register 
allocation to form the native opcode. The generated 
native opcodes are stored in the Instruction Emit Cache 
(IEC) for execution by the backend pipeline. The native 
PC is initialised in a way that it causes the IEC to be 
searched in order to execute a method. In case of an 
instruction miss, the backend pipeline stalls, while the 
missed PC is mapped to BPC and the corresponding the 
basic block is compiled on-the-fly by the pipeline to fill 
the IEC. 
The information required for a Java method to execute is 
available in the Java frame data that is on a Java stack. 
The Java frame data is mapped on a C stack frame, as 
shown in Fig. 11, and the generated native code accesses 
all the information related to that method through the 
Java frame information available on the C stack.  The 
native-code generation for accessing the Java frame 
information becomes simple by offsetting into the native 
stack pointer (SP). The constant pool pointer and the 
method information all are accessed through emitting 
native load/store instructions with appropriate offsets into 
the SP or FP pointers. The previous frame is accessible 
by using the frame pointer (FP).  

Fig. 11.  Java frame data mapped onto native C stack 
frame  

 



4  Simulation environment 

The simulation environment consists of front-end 
hardware compilation pipeline and  the backend native 
processor pipeline. For the backend pipeline we plan to 
use the Simplescalar processor simulator and for the 
front-end we are modifying the Latte JVM JIT compiler 
to incorporate the hardware compilation pipeline stages 
and to generate code for, the Simplescalar processor.  
SpecJVM98 will be used as benchmarks to evaluate the 
hardware compilation pipeline. Various data are being 
collected to determine the size of hardware resources 
required at each pipeline stage. 

5  Conclusion and Future work 

In this paper, we have described the design and the 
micro-architectural details of a hardware compilation 
pipeline for a high-performance front-end Java processor. 
We have studied the possibility that the hardware 
compilation will consume few cycles compared to few 
hundred cycles consumed by JIT compilers for compiling 
the same amount of Java byte codes to native codes. 
Various local optimisation techniques that can be 
implemented in hardware with minimum resources have 
been discussed and their micro-architectures. The 
translation of bytecodes to three-address code using the 
mimic stack has been described, and a two-stage 
hardware register-allocation algorithm is proposed. 
During the translation stage virtual registers are allocated 
and in the code generation stage virtual registers are 
mapped to architectural registers by hardware. The 
architecture of the pipeline and the various stages show 
that a complete hardware compilation pipeline is feasible 
for Java bytecode compilation and seems to require a 
reasonable amount of hardware resources for high-speed 
compilation. 
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