
Hardware compilation for high performance Java processors
G. HARIPRAKASH1, R. ACHUTHARAMAN1, AMOS R. OMONDI2
School of Computer Engineering,
Nanyang Technological University, Singapore.
1{Hariprakash.govindarajalu, Achutharaman.rangachari}@sun.com,
2ASAmos@ntu.edu.sg

Abstract

High performance on Java applications running on server and desktop machines requires fast execution of Java
bytecodes. Such performance can be achieved by Just-In-Time (JIT) compilers, which translate the stack-based
bytecodes into register-based machine code on demand. But one crucial problem in Java JIT compilation is the
compilation time, which increases the total execution time of an application. So it is necessary to reduce the JIT
compilation time as much as possible. In this paper we propose a front-end hardware compilation pipeline that
performs the compilation of bytecodes into native machine code on-the-fly in hardware and pass the compiled code to a
backend native processor for execution. The bytecodes are translated into three-address intermediate representation
form, by mimicking the stack operations, before performing a series of optimizations in hardware. The optimized three-
address codes are used for code generation and architectural register allocation and then placed in a cache for execution
by the backend native processor. A micro-architecture of hardware compilation pipeline is presented.

1 Introduction

The Java bytecodes are generated for a stack machine,
and the Java Virtual Machine (JVM) is responsible for
the execution of bytecodes by interpreting them into
native machine codes, or directly executing them on a
hardware Java processor. Executing Java bytecodes over
the JVM layer on a native platform is many times slower
than the native code equivalent directly running on the
same platform.
Server and desktop Java applications demand high
performance and currently rely on software JVM Just-In-
Time (JIT) compilers to execute the Java bytecode
equivalent on a native processor. The JIT compilation
time itself is a part of the applications execution time and
contributes to slowness. It is therefore important to
reduce the compilation time as much as possible for
applications that require high performance. Hardware
JVM implementations have been shown to perform
several times faster than the software JVM
implementations[7]. However, the current
implementations of JVM in hardware, known as Java
processors, do not provide high the performance
demanded by server and desktop applications, and they
are mostly targeted for embedded applications. This
requires a trade-off between the compilation-time and
execution-time of high-performance applications, which

poses a challenging research problem in Java bytecode
execution.
This paper introduces a hardware compilation pipeline, a
front-end pipeline that takes Java bytecodes as input and
generates optimised native code on-the-fly for the
backend native processor. The bytecodes are translated
into an intermediate representation form followed by a
series of simple optimisations in hardware and then the
generation of native code. The instruction-fetch unit of
the native processor for execution then fetches the native
code. There are three main stages in our pipeline:-
translation stage, optimisation stages, and code
generation stage. The translation stage converts the
decoded Java bytecodes into three-address intermediate
representation. Next, a series of simple machine-
independent and machine-dependent optimisations are
performed. The machine-independent optimisation
includes common sub-expression elimination, copy
propagation, constant propagation, peephole
optimisations, and strength reduction. The machine-
dependent optimisations include register allocation,
placement of software prefetch instructions in the native
code, method invocation based on calling convention of
the native processor, delay-slot code scheduling etc., The
optimisation algorithms are carefully chosen to be linear
in space and time, so that it is feasible for implementation
in hardware. The unit of fetching and compiling by the
front-end pipeline is limited to a basic block of Java
bytecodes, due to limitation on hardware resources as

well as timing constraints imposed by on-the-fly
compilation. The front-end pipeline relies on the native
processor for null pointer checking, array bound
checking, and divide-by-zero exception handling.
The rest of the paper is organized as follows. Section 2
briefly reviews the related work on Java Virtual Machine
implementation, in software and in hardware, and the
motivation for the hardware compilation pipeline. A
detailed description of the proposed hardware
compilation pipeline architecture is given in Section 3.
Section 4 presents the simulation environment, and
Section 5 concludes with the future work.

2 Related Works

The JVM specification is flexible and permits either
software or hardware implementation of the JVM,
provided the execution of the bytecodes follows the Java
specification [13]. The Fig. 1 shows the various ways
in which the JVM may be implemented.

Fig. 1. Executing Java bytecodes.

2.1 Software approaches to JVM

implementation

2.1.1 Interpreter

The simplest form of JVM implementation on a native
platform is as an interpreter program that understands the
Java bytecodes and simulates their execution on the
native platform, e.g the Kaffe interpreter [15]. The Java
compiler generates bytecodes for JVM that is essentially

a stack machine. Writing interpreter for the code
generated for a stack machine is simple, however the
interpreters are severely affected by the performance due
to variables need to be pushed into the stack for
performing operation on them. A study in [3] reports that
48.3% of bytecodes are data-movement instructions.
Hence most of the interpreter's time is spent on
interpreting such instructions. Even with the latest
advanced superscalar processors, the interpretation speed
does not meet the performance requirements of many
Java applications.

2.1.2 Offline bytecode compiler

The static compilation of Java bytecodes into native
instructions can be performed prior to execution;
examples of this approach are J2C[16] and Turbo J [17].
The advantage of this approach is that sophisticated code
generation and optimisation techniques can be applied.
However, the platform-independence feature of Java is
lost when programs are compiled to native instructions.
Hence this approach is not suited for network computing
environment, but for homogeneous environment.

2.1.3 Just-In-Time (JIT) compiler

JIT compilers compile a Java method into native
instructions on-the-fly and then cache the native code for
future reference; examples of this approach are
HotSpot[18], Kaffe JIT[15], IBM JIT[10] and Latte
JIT[9]. The performance gain here comes from directly
executing the native code on a processor, instead of
simulating the bytecodes in software. The compilation
itself should be fast, since the compilation time adds up
to the total execution time of Java application. In order to
cut down the compilation time, extensive optimisations
are not performed, and the JIT compilers are limited to
simple and fast optimisation algorithms.

2.2 Hardware approaches designing Java

processors

The hardware implementations of JVM which are known
as Java processors, perform better than the software JVM
implementations, because the bytecodes are directly
executed as native instructions in hardware. There are
two ways of implementing Java processors; stack-based
Java processors and bytecode-to-native translator or
compiler Java processor pipelines.

2.2.1 Stack processor

The JVM is a virtual stack machine, and implementing it
in hardware is straightforward if the JVM instruction set

forms the native language of the stack processor.
Registers are not used; instead, a high-speed hardware
stack is implemented over a set of registers that acts as a
stack. The pipeline of a typical stack processor is similar
to that of a conventional register machine, except that the
register-access stage is replaced by a stack-access stage
and the registers are replaced by a stack [1] [8]. The main
disadvantage of the code running on a stack machine,
relative to a register machine, is that, because of stack
dependency, less instruction level parallelism can be
exploited. Also, more data movement operations are
needed to move the data from the local variables to the
stack for the execution of an instruction.

2.2.2 Instruction Folding

A group of Java bytecodes can be combined into a single
operation and then issued by a Java processor for
execution, a process known as folding. Contiguous Java
bytecode instructions that have true data dependencies
are grouped into a single compound instruction. This is
done by appropriate folding hardware. Sun Microsystems
introduced such a folding stage in its picoJava-II
processor pipeline [1].

2.2.3 Nested Folding

An improved version of folding, which can detect nested
folding patterns, complex state machine that can
recognize the such patterns and then issue folded
instructions, is proposed in [4].

2.2.4 Translator

When the bytecodes are translated into two-address or
three-address instructions and executed by the RISC
pipeline, the performance will be higher than the folding
stack processor or JIT compiler running on a native
processor [2]. This approach has the advantage of
eliminating the need to design a complete processor from
scratch. Also, legacy applications and the operating-
system support already existing for the native processor
is readily available, with the additional capability of
supporting Java language directly in hardware. Such a
translation processor was proposed in [2], the register
allocation and the optimisations are not emphasized.
JEDI technologies JSTAR accelerator and FaRM Java
co-processor are translators which share the resources of
the back-end native processor.

2.2.5 Hardware compiler

In [5] - the authors proposes an instruction-level-parallel
architecture for Java processor in which the hardware

translates the bytecodes to RISC-like primitives during
the instruction cache miss or a page miss, stores these
primitives in a cache or memory, and later optimises and
issues them to a superscalar pipeline. This is similar to
the AMD K5 processor, which translates the x86
instructions to RISC primitives and then issues them out-
of-order. The optimisation and scheduling are carried out
in software by JIT. A complete hardware compilation in
hardware is feasible, as mentioned in many papers [6]
[5], but there no known implementation or a complete
design of such a Java processor exists.

2.3 Motivation

The code generated for the JVM lacks many possible
optimisations, because of the postfix representation form
of bytecodes. The virtual stack dependency created by
the stack operations does not allow the exploitation of
instruction-level-parallelism available in the code. The
JIT compilers depend on simple and fast algorithms for
optimisation and code generation to cut down the
compilation time. Typically, a JIT compiler that optimises
the bytecode has to access various internal data structures
of the JIT compiler to generate the native code; this will
take hundreds of processor cycles; however, these
algorithms when implemented in hardware will consume
only a few processor cycles to generate native code but
will boost the performance of bytecode execution in
hardware. Most of the compilation algorithms are fairly
simple and can be implemented in hardware. The postfix
representation of bytecodes can be easily translated into
three-address representation by the use of semantic stack
(known as the Mimic Stack) [9] [11]. Most of the
optimisations on the three-address intermediate
representation form require searching for a pattern. The
searching can be performed in hardware, by an
associative search operation, on the three-address
intermediate representations stored in a content-
addressable memory (CAM). The searching operation
when performed in hardware takes O(n) due to parallel
search possible in CAM, but when the same search is
performed in software it takes O(n2), because of the
sequential search. The CAM size plays an important role
in the hardware optimisations. To determine the
approximate size of CAM we studied the average size of
basic blocks in SpecJVM98 applications. This revealed
that 90% of the basic blocks are less than 32 bytecodes.
All of the above points and the need for a processor
which can execute the legacy code as well as Java
bytecodes motivated us to design a high performance
Java pipeline which compiles the bytecodes into native
code on-the-fly

3 Architecture of Hardware
compilation pipeline

The translation of Java bytecodes to native codes in
hardware can accelerate the compilation time by reducing
from few hundreds to few tenths of cycles. The main
reasons for the speedup are the possible optimisations
and their implementation in hardware. The architecture of
a hardware-compilation pipeline requires very little
software support and greatly differs from the
conventional pipeline, since the purpose of the pipeline is
to compile the bytecodes rather than execute them. The
compilation pipeline acts as a front-end pipeline that
compiles the bytecodes into native code and passes the
result it to a native backend pipeline.

3.1 Pipeline Architecture

The proposed hardware compilation pipeline essentially
consists of five stages, as shown in Fig. 2.

Fig. 2. Architecture of hardware compilation pipeline.

After initial bytecode-fetch and decode, the decoded
bytecodes are translated into an intermediate
representation form that facilitates various optimisations.
The translation stage allocates virtual registers when
generating the intermediate code. These virtual registers
are latter mapped into architectural registers in the code

generation and register allocation stage. The optimisation
stage is a series of shorter stages that perform various
machine-independent and machine-dependent
optimisations on the intermediate representation before
generating the native code. The optimisation stages
follow one after the other in an order that will benefit the
following optimisation stages. For example, the common
sub-expression elimination (CSE) optimisation,
introduces more temporary variables while eliminating
the sub-expressions. Performing the copy-propagation
optimisation following CSE removes the unnecessary
move instructions generated during CSE optimisation.
The generated native codes are then passed to the
backend native processor for execution. Runtime
informations, such as execution PC and branch
prediction information, are collected from the backend
native pipeline and used for the efficient compilation of
the bytecodes into their native-code equivalent.

3.2 Micro-architecture of pipeline stages

3.2.1 Fetch stage

In order to perform compilation, a basic block is fetched
first. The software collects the basic-block information,
such as start and end bytecode PC and the information of
the following basic block, from a method and stores it in
the Basic Block Table (BBT) of the fetch control logic, as
shown in Fig. 3.

Fig. 3. Fetch stage.

If the last bytecode in the basic block happens to be a
branch bytecode, then there are two possible following

basic blocks. Java ISA does not allow static branch
prediction information to be embedded in the branch
bytecode instruction, which can cause the miss penalty to
be high unless if nothing is done about it. Furthermore,
our front-end pipeline increases the backend pipeline
depth by additional stages for processing the Java
bytecodes. In order to reduce the prediction miss penalty,
we construct the branch history information in BHT by
tracking the native PC from the backend pipeline, using a
native PC-to-bytecode PC mapping table (PC2BPC).
Using this information, only the potential basic block
following the current is fetched for hardware
compilation. When there is no branch history information
available, both paths of the branch instruction are fetched
for compilation. The method is loaded in the virtual
memory by the class loader and the native virtual address
required to access the method's code is stored in the MVA
register (Method Virtual Address) of fetch-address
generation logic. The bytecode address within a method
pointed by BPC (Bytecode PC) register, starts from zero,
pointed by BPC (Bytecode PC) register, of the fetch
address generation logic. The MVA register contents
added with the BPC register contents forms the bytecode
fetch address, as shown in the fetch address generation
logic.

3.2.2 Decode stage

The size of a JVM instruction varies from one byte to
several bytes; this complicates the decoding logic and
complex bytecode also need software support in
decoding. The decoding stage components are shown in
Fig. 4.

Fig. 4. Decode stage.

The input bytecode stream is stored in a shift register for
decoding. The first bytecode in the stream is used to
index into the bytecode information table, to access the
attributes associated with that bytecode. The attributes
includes the type of operation, the size of the bytecode,
how the stack will be modified by this bytecode, whether
trap into software is needed for this bytecode, the index
into local variable and constant pool available in the
bytecode stream, object reference, etc. Using the size
information, the input bytecode stream is shifted to
access the next bytecode. The decoded bytecodes are
passed for translation through a decode FIFO buffer.

3.2.3 Translation stage

The Translation consist of four major components:- the
Mimic Stack Manager (MSM), the Mimic Stack, virtual
register allocator, and the three-address code generator,
these are shown in the Fig. 5.

Fig. 5. Bytecode to three-address code translation stage.

The translation stage uses the mimic stack to transform
the bytecodes to three-address intermediate
representation. The main difference between the mimic
stack and the Java processor stack is that in the mimic
stack register numbers (virtual or symbolic registers),
rather than the contents of the registers are used. The
MSM coordinates the translation process by
communicating with the mimic stack, virtual register
allocator, and the three-address code generator. The
MSM uses the decoded Java bytecodes and its attributes

to mimic the operation on the mimic stack. Two types of
virtual registers are allocated based on temporary stack
variable or local variables are allocated using the
counters SVcnt and LVcnt, respectively. Whenever the
same variable is referenced again in the bytecodes, the
mapping table returns the previously allocated virtual
register number. Once the mimic stack manipulation is
over, the three-address code generator pops the mimic
stack contents and the three-address code is generated.
Following the translation stage, the three-address code is
optimised. The first optimisation performed is common
sub-expression elimination since the postfix
representation of bytecodes does not eliminate common
sub-expressions. This optimisation can be performed in
the translation stage itself by using a Content
Addressable Memory (CAM) to store the three-address
codes. By doing a CAM search before adding an entry on
the CAM could detect the common sub-expressions. The
result register of a matching CAM entry is pushed again
into the mimic stack for to allow reuse of the result of the
sub-expression, and the code for the redundant sub-
expression is deleted. Fig. 6 shows a sample Java
program with common sub-expressions and Fig. 7 shows
the equivalent bytecode, the mimic stack manipulation by
the translation stage, and the native code generated by the
common sub-expression elimination optimisation.

class dag {
 public static void main(String[] args) {
 int a=5,b=6,c=7,d=8,e=9;
 a = (a+b) + (((a+b)-c)*(d+e)) * ((((a+b)-c)*(d+e))-e);
 ------ ------------------ --------------------
 }
 }

Fig. 6. Java code with sub-expressions

Bytecode Native code Mimic Stack
-------------- int a=5,b=6,c=7,d=8,e=9; ---------------
0 iconst_5 5
1 istore_1 mov 5, r1
2 bipush 6
4 istore_2 mov 6, r2 6
5 bipush 7
7 istore_3 mov 7, r3 7
8 bipush 8
10 istore 4 mov 8, r4 8
12 bipush 9
14 istore 5 mov 9, r5 9
------------ (a+b) ------------------
16 iload_1 r1
17 iload_2 r1, r2
18 iadd add r1,r2,t1 t1
---------- (((a+b)-c)*(d+e)) -------------
19 iload_1 t1, r1

20 iload_2 t1, r1, r2
21 iadd t1, r1, r2, + CAM Match
 t1, t1(pushed)
22 iload_3 t1, t1, r3
23 isub sub t1,r3,t2 t1, t1, r3
 t1, t2
24 iload 4 t1, t2, r4,
26 iload 5 t1, t2, r4, r5
28 iadd add r4,r5,t3 t1, t2, t3

29 imul mul t2,t3,t4 t1, t4
------------ (((a+b)-c)*(d+e))-e -----------
30 iload_1 t1, t4, r1
31 iload_2 t1, t4, r1, r2
32 iadd t1, t4, r1, r2, + CAM Match
 t1, t4, t1(pushed)
33 iload_3 t1, t4, t1, r3
34 isub t1, t4, t1, r3, - CAM Match
 t1, t4, t2(pushed)
35 iload 4 t1, t4, t2, r4
37 iload 5 t1, t4, t2, r4, r5
39 iadd t1, t4, t2, r4, r5, + CAM Match
 t1, t4, t2, t3(pushed)
40 imul t1, t4, t2, t3, * CAM Match
 t1, t4, t4(pushed)
41 iload 5 t1, t4, t4, r5
43 isub sub t4,r5,t5 t1, t4, t5
----- (((a+b)-c)*(d+e)) * ((((a+b)-c)*(d+e))-e) -----------
44 imul mul t4, t5, t6 t1, t6
--- (a+b) + (((a+b)-c)*(d+e)) * ((((a+b)-c)*(d+e))-e) ------
 45 iadd add t1, t6, t7 t7
-a = (a+b)+ (((a+b)-c)*(d+e)) * ((((a+b)-c)*(d+e))-e)-----
46 istore_1 mov t7, r1 EMPTY STACK
447 return

Fig. 7. Common Sub-expression Elimination during
three-address code generation.

When the three-address code generated for a basic block
exceeds the size of the CAM, the CSE optimisation is
limited to the CAM size. The optimisation is not
performed for common sub-expressions across a span
that exceeds the CAM size, and partially optimised three
address codes are generated in such cases. A study
revealed that 90% of the basic blocks are less than 32
bytecodes, and so a 32 or 64 entry CAM is sufficient at
translation stage.

The three-address code CAM is shown in the Fig. 8. Its
operation is as follows the instruction and the source
operands are checked for a match. Commutative
operations, such as multiplication and addition, allows
the operands to be interchangeable. In order to handle the
commutative operations, the search is performed once or

twice - first with the given operand order and then again
if the first search does not match in the CAM and the
operator has commutative property with the order of
operands reversed. To perform the CSE optimisation a
search against all preceding three-address codes is
required; this is accelerated by hardware through parallel
search and consumes only one cycle. Additional logic to
detect if the result register is modified in-between is not
shown in the figure.

Fig. 8. Three-address code CAM.

The iinc bytecode is a special instruction; it is the only
instruction that directly operates on the memory, i.e. local
variables, without the need to push the local variable on
to the stack. The handling of such a non-stack operation
among of all stack operations is slightly tricky when we
use the mimic stack. Because the mimic stack uses the
register reference and not the contents, if a bytecode
sequence that pushes a local variable content into the
stack is followed by iinc instruction which directly
operates on the local variable, there will be a data
inconsistency between the stack and the local variable in
memory; this is perfectly legal, as the bytecode operation
following the iinc instruction consumes the earlier value
from the stack. But when using the register reference for
mimic stack, a search should be performed on the mimic
stack to see if the local variable is in use in the mimic
stack; if so a copy of the local variable should be made
and the value then incremented.

3.3.4 Optimization stages

The optimisation stage is a series of specialized
optimisation sub-stages in sequence. The optimisations
can be classified as machine-dependent or machine-
independent, as shown in the Fig. 9. It should be noted

that CSE optimisation is performed during the translation
stage, when the intermediate three-address codes are
generated. The CSE optimisation introduces many
redundant move operations which need to be eliminated
before any other optimisation, in order to conserve space
in the three-address CAM buffer, as well as other
intermediate holding buffers in the following stages. The
copy propagation optimisation eliminates redundant copy
operations and is therefore placed as the first
optimisation stage.

Fig. 9. Optimisation stages.

The other optimisations include strength reduction, which
replaces an operation with its equivalent simpler
operation e.g. a multiplication by 2 can be replaced by
either addition operation to itself or by the left shift
operation in case of integer operands. There are several
possible machine-dependent optimisations. Software
prefetch instructions can be embedded in the native code
at appropriate places can reduce the load stall created in
the backend pipeline [19]. The other optimisation
includes delay slot scheduling, with the delay slot
instruction filled from the branch target code. The
optimised codes are placed in the buffers that are finally
accessed by the code generation stage to produce the
native code.

3.3.5 Code generation and Register allocation

stage

 In the code generation stage, the optimised three-address
codes are converted into native codes by allocating
architectural registers. The architectural registers replace
the virtual registers allocated in translation stage. The
temporary stack registers are given priority over local

variable registers for architectural register assignment.
The difference between the translation stage register
allocation and the architectural register allocation is that
spill/fill codes are generated if there are no architectural
registers left for allocation This is one reason for
combining the register allocation with code generation.
The calling convention of the native processor is taken
care while generating code for method calls. The register
allocation is done in two phases:- during the translation
stage and during the code generation stage. The
architectural register allocation, the virtual-to-
architectural register mapping, and the code generation
logic are shown in the figure 10.

Fig. 10. Code generation and Register allocation stage.

In the translation stage register allocation, the depth of
the mimic stack is monitored at the end of each basic
block. If the mimic stack in not empty, its contents are
explicitly spilled into designated memory locations, by
generating equivalent three-address codes. The situation
where a variable is pushed and a branch is taken leaves
the mimic stack non-empty at the basic block end. For
example, x = (x>y)?x:y; generates such non-empty stacks
at the end of the basic block. In the code generation
stage, the spill/fill of registers occurs when there is not
enough architectural registers available for allocation. A
virtual-to-architectural register mapping table keeps track

of the allocation mapping is referenced before allocating
a new architectural register.
Using the three-address opcode to index into the
instruction template store, which holds the native
instruction template (i.e., opcode part with the unfilled
register slots), does the code generation. The unfilled
register slots are filled into the template after register
allocation to form the native opcode. The generated
native opcodes are stored in the Instruction Emit Cache
(IEC) for execution by the backend pipeline. The native
PC is initialised in a way that it causes the IEC to be
searched in order to execute a method. In case of an
instruction miss, the backend pipeline stalls, while the
missed PC is mapped to BPC and the corresponding the
basic block is compiled on-the-fly by the pipeline to fill
the IEC.
The information required for a Java method to execute is
available in the Java frame data that is on a Java stack.
The Java frame data is mapped on a C stack frame, as
shown in Fig. 11, and the generated native code accesses
all the information related to that method through the
Java frame information available on the C stack. The
native-code generation for accessing the Java frame
information becomes simple by offsetting into the native
stack pointer (SP). The constant pool pointer and the
method information all are accessed through emitting
native load/store instructions with appropriate offsets into
the SP or FP pointers. The previous frame is accessible
by using the frame pointer (FP).

Fig. 11. Java frame data mapped onto native C stack
frame

4 Simulation environment

The simulation environment consists of front-end
hardware compilation pipeline and the backend native
processor pipeline. For the backend pipeline we plan to
use the Simplescalar processor simulator and for the
front-end we are modifying the Latte JVM JIT compiler
to incorporate the hardware compilation pipeline stages
and to generate code for, the Simplescalar processor.
SpecJVM98 will be used as benchmarks to evaluate the
hardware compilation pipeline. Various data are being
collected to determine the size of hardware resources
required at each pipeline stage.

5 Conclusion and Future work

In this paper, we have described the design and the
micro-architectural details of a hardware compilation
pipeline for a high-performance front-end Java processor.
We have studied the possibility that the hardware
compilation will consume few cycles compared to few
hundred cycles consumed by JIT compilers for compiling
the same amount of Java byte codes to native codes.
Various local optimisation techniques that can be
implemented in hardware with minimum resources have
been discussed and their micro-architectures. The
translation of bytecodes to three-address code using the
mimic stack has been described, and a two-stage
hardware register-allocation algorithm is proposed.
During the translation stage virtual registers are allocated
and in the code generation stage virtual registers are
mapped to architectural registers by hardware. The
architecture of the pipeline and the various stages show
that a complete hardware compilation pipeline is feasible
for Java bytecode compilation and seems to require a
reasonable amount of hardware resources for high-speed
compilation.

6 Literature

 [1]. Sun Microsystems, "picoJava II Microarchitecture
Guide:, March 1999.
[2]. Mladen Berekovic, et al, "Hardware Realization of a
Java Virtual Machine for High Performance Multimedia
Application", Journal of VLSI Signal Processing, Kluwer
Academic Publisher, 1999.
[3]. Vijayakrishnan Narayanan, "Issues in the Design of a
Java Processor Architecture", Ph.D. thesis, Dec 1998.
[4]. Watheq El-Kharashi, et al, "An Operand Extraction-
based Stack folding Algorithm for Java processors",
Hardware Support for objects and Microarchitecture for
Java - 2nd annual workshop, Texas, Sep 2000.

[5]. Kemal Ebcioglu, et al., "A JAVA ILP Machine Based
on Fast Compilation", International Workshop on
Security and Efficiency Aspects of Java, part of the
IEEE MASCOTS Conference. Eilat, Israel, January 9-10,
1997.
[6]. Andreas Krall and et al, "JavaVM Implementation:
Compiler versus Hardware", Computer Architecture (
ACAC '98), Australian Computer Science
Communications 20(4). Perth, Australia.
[7]. Vijaykrishnan, Ranganathan, et al., "Object-Oriented
Architectural Support for a Java Processor", ECOOP’98,
LNCS 1445, pp.330-355, 1998, Springer-Verlag Berlin
Heidelberg 1998.
[8] Chang, Ton, Kao, Chung, "Stack operation folding in
Java processors", IEEE Proc. of Computing Digital Tech.
Vol. 145, No. 5, September 1998.
[9] Byung-Sun, et al, "LaTTe: A Java VM Just-in-Time
Compiler with Fast and efficient register allocation". Intl
conference on Parallel architectures and compilation
techniques, Oct. 1999.
[10]. T. Suganuma, et. al, "Overview of the IBM Java
Just-in-Time compiler". IBM systems Journal, vol. 39, no
1. 2000.
[11]. Ali-Reza Adl-Tabatabai et. al., "Fast, Efficient code
generation in a Just-In-Time Java compiler". Proceedings
of the ACM SIGPLAN ’98 Conference on Programming
Language Design and Implementation, pages 280-290.
ACM Press, 1998.
[12]. Alfred V. Aho, Ravi Sethi, Ullman, " Compilers,
principles, techniques and tools", Addison Wesley
publishing, 1986.
[13]. Bill Venners, "Inside Java Virtual Machine",
McGraw hill. 1998.
[14]. SPEC JVM98 benchmarks,
"http://www.spec.org/osg/jvm98, 1998.
[15]. T. Wilkinson, " Kaffe: A JIT and interpreting virtual
machine to run Java code", http://www.transvirtual.com/
1998.
[16].J2C,
"http://www.webcity.co.jp/info/andoh/java/j2c.html
[17].TurboJcompiler,"
http://www.osf.org/www/java/turbo".
[18].
http://java.sun.com/products/hotspot/docs/whitepaper/
 Java_HotSpot_WP_Final_4_30_01.html
[19]. Callahan, K. Kennedy, Porterfield, "Software
prefetching," proceeding of the fourth international
conference on architectural support for programming
languages and operating systems, April 1991.

