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Abstract 

    Prefetching reduces cache miss latency by moving data 
up in memory hierarchy before they are actually needed. 
Recent hardware-based stride prefetching techniques 
mostly rely on the processor pipeline information (e.g. 
program counter and branch prediction table) for predic-
tion. Continuing developments in processor microarchi-
tecture drastically change core pipeline design and re-
quire that existing hardware-based stride prefetching 
techniques be adapted to the evolving new processor ar-
chitectures. 
    In this paper we present a new hardware-based stride 
prefetching technique, called DStride, that is independent 
of processor pipeline design changes. In this new design,  
the first-level data cache miss address stream is used for 
the stride prediction. The miss addresses are separated 
into load stream and store stream to increase the ef-
ficiency of the predictor. They are  checked separately 
against the recent miss address stream to detect the 
strides. The detected steady strides are maintained in a 
table that also performs look-ahead stride prefetching 
when the processor stride reference rate is higher than 
the prefetch request service rate.
    We evaluated our design with multimedia workloads 
using execution-driven simulation with SimpleScalar 
toolset. Our experiments show that DStride is very effec-
tive in reducing overall pipeline stalls due to cache miss 
latency, especially for stride-intensive applications such 
as multimedia workloads.

1.  Introduction

    Multimedia workloads are very memory intensive and 
usually generate many cache misses when run. For ex-
ample, motion compensation and  audio or video com-
pression are heavily memory bounded; these programs  
spend most of their runtimes stalled on memory requests. 
Prefetching has long been known to significantly decrease 
the cache miss latency. Increase in demands for process-
ing power and corresponding advancements in processor 

pipeline design have lead to the emergence of multimedia 
processors and general-purpose processors enhanced with 
multimedia extensions, but more careful study is needed 
in order to adopt any of the existing  hardware based 
stride prefetching techniques to the emerging microarchi-
tectures.
    In this paper, we propose a new design for a hardware 
based stride prefetching scheme which is intended to
• operate independent of processor pipeline design

changes,
• reduce the cache miss latency, especially for
  multi-media applications.
Our design of stride prefetching uses the miss reference 
stream and so is different from  existing program counter  
based stride prefetching schemes [1, 6, 15]. Our predictor 
maintains a Stride Prediction Table (SPT) that compares 
each  recent miss address with  several previous  miss ad-
dresses to calculate all possible strides. State bits are 
maintained to identify steady strides. A Steady Stride 
Table (SST) maintains the steady strides detected by the 
SPT and issues  prefetch requests. We maintain a separate 
prefetch buffer cache to avoid cache pollution that may 
occur because of prefetched data replacing useful cache 
blocks.
    We evaluated our design using three metrics: the 
Memory Cycles Per Instruction (MCPI), which is the 
number of memory cycles per instruction; Relative MCPI 
(RMCPI), which is the MCPI relative to the baseline sys-
tem configuration without prefetching; and the Global 
Success Ratio, which is the fraction of cache misses 
which are avoided by the prefetching [4]. On average, for 
multimedia workloads, our design reduces the MCPI con-
tribution by about 60-75% and the GSR is increased by 
about 50-75% when compared to the baseline system con-
figuration.
    The outline of the rest of the paper is as follows. In 
Section 2, we discuss related work done in hardware- 
based prefetching.  Section 3 describes the detailed design 
and implementation of our prefetcher, DStride.  In Section 
4, we discuss our simulation environment and the perfor-
mance evaluation of DStride. Section 5 consists of a sum-
mary with a discussion of future work.



2. Related work in hardware-based prefetch-
ing 

    Hardware-based  prefetching can be classified into two 
categories: program counter (PC)  based scheme and data-
address based schemes [9].  PC-based scheme  operates 
on reference address stream, by using the PC value and 
branch prediction table to determine whether to prefetch 
and to  initiate any subsequent prefetch request.  On the 
other hand data-address-based schemes  operate mostly 
on reference miss address stream and relies on the data 
address itself to decide when to initiate a prefetch request. 

2.1. PC-based prefetching schemes

    Baer and Chen [1]  investigate a hardware data 
prefetching scheme that uses a  Reference  Prediction  
Table (RPT) and Look-Ahead  Program  Counter (LA-
PC).  The RPT is a cache whose tag field contains the ad-
dress of a load/store instruction and whose data field con-
tains the last address referenced by that instruction and 
the corresponding stride. The LA-PC is a  secondary  PC 
that is used to predict  the  execution stream in situations  
where the  loop iteration  time is  smaller  than the  
memory  latency.  The  LA-PC is modified via the Branch  
Prediction  Table (BPT).  When the LA-PC value is that 
of a load/store  instruction,  the next address is calculated 
by adding the address with the stride of that RPT entry 
and a prefetch is issued. 
    The original Baer-and-Chen prefetching  scheme can-
not work with  superscalar processors, but  Pinter and 
Yoaz in their Tango have managed to modify it ap-
propriately [6].  The major difference in Tango with re-
spect to Baer and Chen are: 1) The  LA-PC  and  RPT  are  
difficult  to  adapt  to  multiple   issue   environment.  
Tango  defines a  Pre-PC  in order to adapt to  multiple-
issue processors. 2) In contrast to the LA-PC,  the Pre-PC  
look-ahead  scheme in Tango scans only   the  branches  
and the memory  access  instructions. This is done by Pre-
PC using a extended Branch Target Buffer (BTB) with 
additional Program Process Graph (PPG). 
    The major  disadvantage  of PC-based  schemes  is that 
they  very much depend  on the  pipeline  design.   There 
are now several new microarchitectures, for example, 
speculative  execution, multiscalar, multithreaded etc., 
and PC based schemes to these architectures  have yet to 
be adapted to these.  We think data-address-based 
schemes are superior to PC based schemes  because of 
their  inherent  advantage of not depending on the under-
lying pipeline microarchitecture. 

2.2. Data-address-based prefetching schemes 

2.2.1. Cache prefetcher. Generally a cache satisfies pro-
cessor references by demand fetching. Cache prefetching 
is the loading of a block before it is referenced by the 
pipeline [4]. There are various cache prefetching policies: 

One Block Look-ahead (OBL) policy, in which  upon ref-
erencing a block i, the next block,  i+1,  is prefetched; 
prefetch on miss; prefetch unconditionally; prefetch on 
previous successful prefetch; and so forth. The drawback 
of the cache prefetching schemes is that  useless 
prefetches can pollute the cache by displacing the useful 
cache blocks from the cache. The other disadvantage is 
that none of the cache prefetching policies above is suit-
able for "stridy" workloads. 

2.2.2. Stream buffer. Jouppi introduced Stream Buffers 
as a load/store latency-reduction technique [10]. The 
Stream Buffer proposed by Jouppi is a FIFO stream buffer 
that prefetches a sequential stream of cache lines starting 
at a given address. The main drawback of the FIFO 
Stream Buffer is not capable of handling non-unit strides.  
    Palacharla and Kessler [11] modified FIFO stream 
buffers to handle non-unit stride detection, by dynami-
cally partitioning the physical address space and detecting 
the strides within the partition. In their scheme each 
physical address issued by the pipeline is divided into a 
tag (higher order bits) and a czone (concentration  zone). 
The czone is set at runtime. Two references will fall 
within the same partition if their addresses have the same 
tag bits. A history buffer (non-unit stride filter) and a fi-
nite state machine are then used to detect  non-unit 
strides.  At the end of three consecutive strided refer-
ences, a stream is allocated and the entry in the history 
buffer is freed. A unit-stride filter is also used.
     Setting the czone bit at runtime requires a software bit-
mask that must be individually adjusted for a given ap-
plication and architecture [11, 13]. This seems to be im-
practical  for even a small set of multimedia workloads 
[14]. Our stride detection logic, discussed in Section 3.3, 
can be used with stream buffers to detect both unit and 
non-unit strides but does not have these drawbacks. 

2.2.3. Markov predictor. A Markov predictor uses the 
miss-address stream as the prediction source [12]. The 
Markov model relies on  past references to predict future 
references when a past reference is repeated. A hardware 
approximation to the Morkov model maintains a prefetch 
table with several past miss addresses and several pos-
sible subsequent references for each miss address. When 
the current miss address matches any of the miss ad-
dresses in the prefetch table, all of the next-reference ad-
dresses associated with the address are  eligible for 
prefetch. The Morkov predictor works well for the pro-
grams in which the same address patterns are repeated 
and its performance for instruction prefetching is better 
when compared to data prefetching - but it does not 
handle stride prefetching.

3. Design of DStride prefetcher 
3.1. Motivation 

    New developments in microarchitecture significantly 
change the design of   processor pipeline, so any 



hardware-based stride prediction technique which closely 
interacts with pipeline must be modified for every major 
change in microarchitecture. For example, Bear and 
Chen’s [1] PC-based prefetching scheme for scalar pro-
cessor was redesigned by Pinter and Yoaz [6] in their 
Tango implementation to adopt it for superscalar (mul-
tiple issue) processors. However, PC-based stride predic-
tion schemes can only identify strides that are enclosed in  
loop. Data-address based prefetching schemes detect both 
strides that are enclosed in  loop, but also detects those 
that are not. 
    As an example, consider the code fragment below. This 
is  taken from MPEG2 code [7] and is used in idct-
col(),  which is a heavily used function in MPEG 
Encode/Decode programs to calculate the two-
dimensional inverse discrete cosine transform. The access 
to blk[8*i] forms the a stride access, and each access 
causes a new cache line to be fetched for store operation 
in a typical 16-byte block of a cache. 

  static void idctcol(blk)
  short *blk;
  {
  ...
  /* fourth stage */
  blk[8*0] = iclp[(x7+x1)>>14];
  blk[8*1] = iclp[(x3+x2)>>14];
  blk[8*2] = iclp[(x0+x4)>>14];
  blk[8*3] = iclp[(x8+x6)>>14];
  blk[8*4] = iclp[(x8-x6)>>14];
  blk[8*5] = iclp[(x0-x4)>>14];
  blk[8*6] = iclp[(x3-x2)>>14];
  blk[8*7] = iclp[(x7-x1)>>14];
  }

    A data-address-based prefetching scheme can detect 
the stride in this code and issue a prefetch when the third 
reference to the blk[] is issued. But a PC-based stride 
predictors, since it relies on the PC to identify the stride 
when the loop repeats, cannot detect the stride because it 
is not enclosed in a loop. The above code fragment has 
unit stride, so a stream-buffer logic seems to be sufficient 
to handle the prefetches. However, non-unit strides cannot 
be handled by stream buffers without additional non-unit 
stride detection logic to detect them. We next present the 
design of an appropriate stride detector.

3.2. Basic block diagram 

    DStride, the new hardware prefetcher that we propose, 
consists of a Prefetch Buffer, Prediction Logic, and  
Prefetching Logic, arranged as  shown  in Figure 1; In a 
typical realization, all of the logic shown, except for the 
Level-2 cache, will be on-chip. 
    The Prefetch Buffer (PB) holds the predicted data, 
which are prefetched ahead in time. We opted to have a 
separate on-chip Prefetch Buffer to store the  prefetched  
data in order to avoid cache  pollution in the data-cache; 
the buffer is logically at the same level as the data cache. 
Both the data cache and Prefetch Buffer are searched in 
parallel for a match with reference addresses coming from 
the pipeline.  On an address match in the prefetch buffer, 

the data is passed to the pipeline and the  address is 
passed to the prefetching logic to prefetch according to 
any predicted strides. 
    The Prediction Logic sits below the data cache and  
uses the data cache miss address  stream to predict the 
future  references [2, 5]. The predictor consists of Stride 
Prediction Tables (SPT) that detect steady  strides, by 
comparing the current miss address with  recent miss ad-
dresses. The SPTs have associated adder/subtracter units 
to calculate the strides. 

Processor Pipeline

Prefetch 
 Buffer
  (PB)

Prefetcher 
    Logic

Prediction Logic

Steady Stride Table
           (SST)

Stride Prediction 
        Table
        (SPT)

Prefetch
 Queue

L2 Cache (unified)

L1 D-cacheL1 I-cache

Figure 1.Schematic block diagram of DStride
   

     The Prefetching Logic consists of a Steady Stride 
Table (SST) and a Prefetch Queue (PQ).  When the SPT 
detects a steady stride, the corresponding entry is re-
moved from SPT  and moved into SST.  When a data-
cache miss address or a Prefetch Buffer hit address 
matches with a SST entry, a prefetch request is issued for 
the next stride address. The prefetch requests are queued 
in the PQ, which acts as an interface between the on-chip 
SST and the off-chip level-two cache. 

3.3. Prediction logic 

    A data-address based hardware    predictor predicts  fu-
ture references based on  previous access patterns by us-
ing either the address reference stream (sequence of ad-
dresses referenced by the processor pipeline) or the miss  
address  stream (the data-cache miss addresses).
    In the DStride  predictor, the miss address stream is 
used to detect the strides.  Miss addresses fed into Predic-
tion Logic are aligned to the data-cache block size and so 
the predicted strides are of  multiples of data-cache block 
size. In the case of  strides that which are smaller  than  
the data-cache block  size, accesses are to the  same cache 
line. When the smaller strides cross the cache block 
boundary, they cause cache misses, which  are tracked by 



the prediction logic in the  miss address stream in order to 
correlate and identify the strides.

3.3.1. Stride Prediction Table. The main component of 
the prediction logic is the Stride  Prediction  Table (SPT). 
The predictor uses two different SPTs to track the load 
and store addresses separately (Load SPT and Store SPT) 
to increase the efficiency of the predictor. The rationale 
for the separate SPTs is given below. The SPT  records 
recent miss addresses and compares the current input ad-
dress with the previous addresses to  calculate  the strides  
between them. In other words, the SPT calculates all pos-
sible strides for an address by comparing it with a set of 
recent addresses. From the comparison, SPT can calculate 
several different strides. These addresses forms a window 
for comparison to detect the strides. For example, con-
sider the loop 

int a[1024],b[1024],c[1024];
register int i,j,k,l;

for(l=0;l<1024;l++){
a[i] = 10; i +=10;
b[j] = 20; j +=20;
c[k] = 30; k +=30;

} 

    The array a,b and c are accessed after every three 
memory references. For the SPT to detect the stride of 
each array, the window of comparison should be at least 
3. The schematic block diagram of a DStride predictor 
with a 4-window SPT is shown in Figure 2. 
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Figure 2. DStride with 4-window SPT hardware block diagram

An SPT entry consists of four fields: 
• miss address, which holds a data-cache miss address; 
• strides, which holds a fixed number of strides; 
• predicted  addresses -  one next-address for each 

stride, based   on the current  miss  address  and the 
stride; 

• two state bits that partially encode the past history 
and are used to determine the steady state for predic-
tion.

The SPT stride calculation is explained with an example 
of a 4-window SPT,  shown in Table 1. 

Strides Predicted  Addresses
Miss
addresses

S0 S1 S2 S3 Pa0 Pa1 Pa2 Pa3

d0

d1

d2

d3

(d1-d0) (d2-d0) (d3-d0) (d0’-d0)

(d2-d1) (d3-d1) (d0’-d1) (d1’-d1)

(d3-d2) (d0’-d2) (d1’-d2) (d2’-d2)

(d0’-d3) (d1’-d3) (d2’-d3) (d3’-d3)

d1+S(0,0) d2+S(1,0) d3+S(2,0) d0’+S(3,0)

d2+S(0,1) d3+S(1,1) d0’+S(2,1) d1’+S(3,1)

d3+S(0,,2)d0’+S(1,2) d1’+S(2,2)d2’+S(3,2)

d0’+S(0,3)d1’+S(1,3) d2’+S(2,3) d3’+S(3,3)

Table 1. Four-window Stride Prediction Table

Let dn be the current miss address, dx be the xth recent 
miss address against which comparison is made, and dx’ 
be the current miss address after wrap around of the win-
dow and N be the SPT window size. If the nth stride cor-
responding to dx is sxy , 
where 

y = [(N-1)+(n-x)] modulo N
then 

sxy = dn - dx 

And if  the nth predicted address corresponding to dx is  
paxy,  then 

paxy = dn + sxy 

    A set of adders/subtracters that operate in parallel are 
used to carry out the above calculations for all the recent 
miss addresses dx,  where 0<= x <N, within the window 
N. When the window is filled, the miss address values are 
stored by wrapping around in a circular fashion. Simi-
larly, the strides and predicted addresses wrap around in a 
circular fashion. When n equals N, the miss address wraps 
around and occupies the 0th entry and n becomes 0. 
    Every miss address is associatively searched for among 
the predicted addresses in the Load SPT and the Store 
SPT. On a match, the corresponding state bits are updated 
and the next predicted address is calculated and stored; on 
a miss, several strides are calculated as explained above.

 3.3.2. SPT states. State bits are used to improve  the  ac-
curacy  of the  prediction  by filtering out irregular  and 
false  strides. Two bits are maintained for  each predicted  
address and are a partial encoding of the history. The en-
coding in these two bits direct future actions on prefetch-
ing.  



The four states defined by the two bits are
• S_INIT, the initial state, which is set when a pre-

dicted address is added
• S_TRANS, the transient state, which indicates when 

the prediction logic is not sure of whether the predic-
tion is correct or not

• S_STEADY, the steady state, which is when the pre-
diction logic determines that the  prediction is correct 
and the stride could be consistent for a while

• S_NOSTATE,  which indicates that the entry is free.

When a data-cache miss address matches a predicted ad-
dress, one of two state transitions occurs :
• If the current state is S_INIT, then the state is 

changed to S_TRANS. 
• If the current state is S_TRANS, then the state is 

changed to S_STEADY and the SPT entry  is moved 
to the SST. After moving the entry to SST, the state 
is changed to S_NOSTATE to free the SPT entry.

3.3.3. Load SPT and Store SPT. Programs whose access 
patterns are stridy in nature  seem to have sequence of 
Load or Store accesses to memory. Consider for example, 
the  code fragment 

char *memcpy(b,a,n)     
char *b;     
register char *a; 
{        

 register char *d = b;         
while(n--)   

*d++ = *a++; 
return(b);     

} 

There are two streams of accesses in this code: the Load 
Stream is formed by the sequence of Load instructions 
that are issued to access the pointer a; and the Store 
Stream is formed by the sequence of  Store instructions 
that are issued to access the pointer d. The loop issues 
alternate accesses to the two streams. If the SPT is uni-
fied, it compares the current access address with  several 
recent addresses to identify any strides, alternate accesses 
to Load Stream and Store Stream cause the SPT to com-
pare the Load Stream addresses with the Store Stream 
addresses, which results in useless strides and pollution of 
the SPT. In PC-based stride predictors, alternate access to 
the Load and Store streams  is  automatically taken care 
of, since only one instruction can be tagged with the PC 
and it cannot be both a Load and a Store. In the DStride 
predictor, the pollution is avoided by maintaining two 
separate SPTs - one for the  Load stream and one for the 
Store stream. The Load SPT compares the current Load 
miss address with only the recent Load miss addresses 
and tries to identify a steady stride. Similarly, the Store 
SPT compares the current Store miss address with only 
the recent Store miss addresses to identify a steady stride. 
Thus, the SPT pollution is avoided, and the efficiency of 
the predictor is significantly improved.

3.4. Prefetching Logic

    The Prefetching Logic issues prefetch requests to the 
next level of the memory hierarchy. The logic consists of 
the Steady Stride Table (SST), which maintains the steady 
strides and queues the prefetch requests to Prefetch Queue 
(PQ).

3.4.1. Steady  Stride Table. Steady strides detected by 
SPT are  moved into the SST, which maintains an entry 
for every such stride. An SST entry and its associated 
logic are shown in Figure 3.  The SST logically sits be-
tween the level-one caches (the data-cache and the 
Prefetch Buffer) and level-two cache. The main function 
of the SST is to handle look-ahead prefetch. When the 
processor stride reference rate is higher than the prefetch 
request service rate, the prefetched data may not be avail-
able in time for use. In order to overcome this problem, 
the SST does prefetching in advance by increasing the 
look-ahead distance.

PA LA-PA nLA-PAFlag Stride LA-Dist

Prefetch Request

+

X+

L1 D-cache miss address (or)
 PB hit address

+

On PA address match
On Prefetch completion

Figure 3. An entry of a Stredy Stride Table

The SST entry has six fields :
• the Predicted Address (PA)
• a Look-ahead Predicted Address (LA-PA)
• a Flag that indicates prefetch state information, as

IDLE - no outstanding prefetch
PENDING - current prefetch is pending
PF_PENDING - previous prefetch is pending

• a next Look-Ahead Predicted Address (nLA-PA)
• Stride, which is the  stride value
• the Look-ahead stride Distance (LA-Dist)

    PA and Stride are initialized from the SPT when a 
steady stride is identified by the SPT. Initially the LA-Dist 
is set to 1. LA-PA is initialized to the PA value and a 
prefetch request is issued to the PQ.  Flag is set to PEND-
ING because a prefetch request has been issued. nLA-PA 
is calculated as LA-PA + Stride and stored. On the 
completion, of a prefetch the PENDING flag is cleared 
and set to IDLE , and the nLA-PA value is moved to LA-
PA.
    There are two input streams to SST: the data-cache 
miss stream and prefetch-buffer hit stream. The input ad-
dress is associatively searched for in the PA entries of the 



SST. On a miss, the input address is passed to the predic-
tion logic (SPT). On a match, PA is advanced to the next 
stride value. The prefetch is issued for the next stride ad-
dress only when the flag is in IDLE state. In this case, the 
next stride address is available in the LA-PA. The prefetch 
is issued for LA-PA value, the flag is set to PENDING, 
and nLA-PA is advanced to LA-PA + Stride. On prefetch 
completion, the PENDING flag is cleared and set to 
IDLE, and nLA-PA value is moved to LA-PA.
    When the flag is in PENDING state, it indicates that  an 
outstanding prefetch is in progress. In this case, the input 
address is also compared with LA-PA to see if the input 
address itself corresponds to a pending request. If the in-
put address is the same as the LA-PA, then it means that 
PA has caught up with LA-PA. This scenario can happen 
when the rate at which the stride is accessed by the pipe-
line is higher than the rate at which the prefetch requests 
are serviced and it can happen more easily with shorter 
loops and in cases where the strides accesses are issued 
quickly. In order to make the data available earlier than it 
is actually needed, LA-Dist is incremented every time in 
the powers of two, but, it  is not incremented beyond LA-
Limit in order to avoid unnecessary look-ahead 
prefetches. The new look-ahead address is calculated as  
LA-PA = PA + (Stride * LA-Dist). A prefetch is issued on 
the recalculated LA-PA , and the flag is set to PENDING. 
nLA-PA is advanced to LA-PA + Stride. On prefetch 
completion the PENDING flag is cleared and set to IDLE, 
and nLA-PA value is moved to LA-PA.
    When the flag is in PENDING state and the input ad-
dress does not match the LA-PA, it means that the previ-
ous prefect request is not yet completed.  The flag is set to 
PF_PENDING to notify the SST to issue a prefetch on 
completion of the previous pending prefetch. On such a   
completion, nLA-PA is moved to LA-PA and a prefetch is 
issued, PF_PENDING is cleared, and PENDING is set. 
    To improve  the  prediction  accuracy, the prefetch re-
quests are not issued for  data that is already present in the  
data-cache or in  the Prefetch Buffer. When the prefetch 
address raises a trap for address translation, or when an 
out-of-range address is issued by the prefetching logic, 
the prefect request is discarded. A pseudo-LRU policy is 
used for replacing SST entries.

3.4.2.  Prefetch Queue. Prefetch requests and  demand-
fetch requests (data-cache misses) are queued in the 
Prefetch Queue (PQ). Demand-fetch requests get  priority 
over prefetch requests. The PQ is located just before the 
level-two cache and acts as a data router when the data 
arrives back from that cache. The PQ maintains a table of   
requests to be serviced by the level-two cache.  Each en-
try of the PQ has the format shown in Figure 4.

Address Type State

Figure 4. An entry of a  Prefetch Queue

The   entry consists of three fields :
• Address, which is the  prefetch/demand fetch request   

address.
• Type, which indicates the  type of requests as 

D - demand fetch request.
P - prefetch request.

•     State, which indicates the state of a request - IDLE or
       PENDING

    Request addresses are associatively searched for in the 
Address field of the PQ. If a demand fetch request is al-
ready entered in the PQ as a prefetch request, then the 
prefetch request is converted into a demand fetch by 
changing the type from P to D and SST is notified to clear 
the PENDING flag for this request. Duplicate requests are 
not queued and are simply discarded. When the request is 
selected for  service by  the level-two cache, the state is 
set to PENDING. On completion of the request, the data 
is routed to the data-cache or the Prefetch Buffer, accord-
ing to the type of the request and the PENDING state is 
cleared to IDLE. 

4. Simulation study and performance 

    We  used   Wisconsin SimpleScalar version-2.0 toolset 
[3]; this is an execution driven superscalar processor 
simulator with out-of-order issue capability. We inte-
grated our DStride prefetcher into the SimpleScalar and 
studied the behavior with MediaBench workloads [14] 
and with a small set of commonly used real programs. 
The workload characteristics  are summarized in Table 2a 
and Table 2b.

Load% Store% Branch%

matmul
100x100

       kernel6
(livermore loop)

gzip

gunzip

MPEG2encode

MPEG2decode

87.5

81.8

70.3

84.9

92.6

63.4

12.5

18.2

29.7

15.1

7.4

36.6

2.5

3.9

18.3

17.9

16.0

11.5

Table 2a. MediaBench workload characteristics

16074334

73628

9956337

2126244

924603897
82275834

EPIC coder 
(epic)
EPIC decoder
(unepic)

Mesa -mipmap¹

Mesa -osdemo²
Mesa -texgen³

G.721-encode

G.721-decode

7945206

1794700

23676377

7873475

32203190

54764749

55103707

89.4 10.6 15.0

56.1

67.1

69.2

65.4

77.2

76.2

43.9

32.9

30.8

34.6

22.8

23.8

21.1

16.6

18.3

12.9

23.0

23.0

memcpy-10k 75414 68.4 31.6 8.0

 Memory
references

MediaBench
 Multimedia
  workloads

   General
Applications

 Memory
references Load% Store% Branch%

Table 2b. General application workload characteristics
  No. of 
 Executed 
instruction

  No. of 
 Executed 
instruction

252120

80179377

280676

35608364

7667259

1946374852

75854342

55305205

7659981

74987642
24930922

105477995

319264177

307575444

Description

Efficient Pyramid Image 
Compression - bi-orthogonal 
pryamid transform coder,
decoder 

Clone OpenGL 3-D graphics 
library. ¹ executes texture map-
ping, ² executes rendering pipe-
line, ³ generates texture mapping

Standard for high quality digital
video transmission uses DCT 
for coding, IDCT for decoding.

CCITT Voice compression

We studied the performance of DStride prefetcher with 
various cacheline sizes, cache sizes and associativity by 
comparing with a baseline system. The default system 
configuration of the DStride and the baseline system are 
given in the Table 3.



System parameters
Default Values

Level-1 
D-cache

Size - 16K, Cacheline - 32 bytes, Associativity - 1, 
Dual ported Tag, Write Allocate, PIPT.

Level-2 
 cache

Size - 4MB, Cacheline - 64 bytes, Associativity - 1, 
Write Back, PIPT.

SPT 8 Window - Load/Store SPT

SST 256 Steady Stride entries

Prefetch Buffer 1024 cache lines

Prefetch Queue 4 entries

Table 3. Default system configuration

Baseline DStride 

Level-1 
D-cache

Level-2 
 cache

mem-bus 
  width

8 bytes

LA-Limit 16 strides

mem-bus 
  width

4.1. Evaluation Metric 

    The studies of J. Tse and A. J. Smith in [4] clearly 
showed, that a decrease in the cache miss ratio attribut-
able to prefetching does not necessarily actually lead to an 
improvement in CPU performance.  Even when the miss 
ratio decreases, prefetching can degrade performance be-
cause of  prefetch lookups on busy cache address tag ar-
rays and a busy memory bus on prefetch address transfers 
and data fetches. We consider three important metrics 
taken from [4] to evaluate our design - Cycles Per Instruc-
tion contributed by Memory access (MCPI), Relative 
MCPI (RMCPI) and Global Success Rate (GSR). MCPI is 
defined as

MCPI = 
total memory access penalty

total no. of instructions executed

The total memory access penalty is a sum of  data-cache 
miss penalty and partial data-cache miss penalty - which 
is the portion of the penalty for those miss requests that 
were already requested by the prefetcher (due to late 
prefetch).

We use Relative MCPI  to compare the results of DStride 
prefetching scheme with the same system without 
prefetching. The RMCPI for the baseline system (without 
prefetching) is 1. RMCPI is defined as

MCPI with prefetching
RMCPI =

MCPI without prefetching in the same system

To evaluate the accuracy of our model, we chose Global 
Success Ratio (GSR) as a metric. The GSR is the fraction 
of cache misses which are completely avoided or partially 
avoided (i.e., prefetches already in progress). The GSR is 
defined as

Total number of correct prefetches

(Total  number of correct prefetches + Total number of true cache misses)
GSR =

A GSR of zero implies that a prefetching strategy does 
not save any misses,  while a GSR of one implies all the 
cache misses are avoided. The GSR for the baseline sys-
tem is  0. The goal is to reduce the MCPI, RMCPI and to 

increase the GSR with data prefetching using DStride 
model.

4.2. Performance Evaluation 

    We studied the effect of DStride  prefetching statistics 
by varying the cache block sizes, cache sizes and as-
sociativity of the data-cache. We chose DStride’s main 
parameter, the SPT size as 8 entries; smaller SPT size, 
such as four, will not be sufficient to be the  prediction 
window  as it cannot cover  the strides that of  greater  
than four. On the other hand, a  prediction window of 16 
entries does not seems to be cost effective. We chose 8 
entry SPT as this seems to provide  good  coverage and 
allows a cost-effective implementation.

4.2.1. Effect of cache block size on prefetching. In Fig-
ures 5a and 5b,  the MCPI is plotted as a function of cache 
block size for general applications and MediaBench ap-
plications. 
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Figure 5a. MCPI graph - base model Vs DStride for cacheline sizes 
L1:32-64-128 bytes; L2:64-128-256 bytes, for general applications
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epic unepic MESA-
mipmap

MESA-
osdemo

MESA-t
exgen

G.721-d
ecode

G.721-e
ncode

MPEG2
-decode

MPEG2
-encode

0

0.013

0.026

0.039

0.052

0.065

M
C

P
I

Figure 5b. MCPI graph - base model Vs DStride for cacheline sizes 
L1:32-64-128 bytes; L2:64-128-256 bytes, for MediaBench 

applications

 L1-32:L2-64 baseline L1-32:L2-64 DStride

 L1-64:L2-128 baseline L1-64:L2-128 DStride

 L1-128:L2-256 baseline L1-128:L2-256 DStride



On average for, MediaBench video applications, DStride 
reduces the MCPI up to 75%, for general applications 
71% gain in MCPI is obtained. We observe when cache 
blocks are 32 bytes long, DStride performs better for Me-
diaBench applications, whereas  general applications per-
form better  when cache block size is 64 byte long. When 
cache block size increases, more cycles are required to 
load a prefetched block; because of the constant bus width 
of 8 bytes used in our simulation. Consequently,  most of 
the prefetch requests in progress are converted to partial 
miss when the stride reference rate is higher than the 
prefetch load latency. This phenomenon is observed as 
increase in RMCPI in all the applications for 128 bytes 
level1-cache with 256 bytes level-two-cache shown in 
Figures 5a, 5c and Figures 5b, 5d, except epic. G.721 en-
coder and decoder have insignificant stride patterns, this 
is the reason for the RMCPI of these programs are close 
to that of the baseline system.
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Figure 5c. RMCPI graph for cacheline sizes L1:32-64-128 bytes; 
L2:64-128-256 bytes, for general applications.
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Figure 5d. RMCPI graph  for cacheline sizes L1:32-64-128 bytes; 
L2:64-128-256 bytes, for MediaBench workloads.
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Figure 5e. GSR graph for cacheline sizes L1:32-64-128  bytes; 
L2:64-128-256 bytes, for general applications
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For general applications, we observe that an average GSR 
is about 75% (Figure 5e), and for MediaBench applica-
tions it is about 50% (Figure 5f). 
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Figure 5f. GSR graph for cacheline sizes L1:32-64-128 bytes; 
L2:64-128-256 bytes, for MediaBench workloads.
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4.2.2. Effect of cache size on prefetching. The results in 
Figure 6a show that there is no significant gain in RMCPI 
or GSR as compared to that of  16k cache size with larger 
size caches. DStride with 16k cache size in all the Media-
Bench applications shows best performance. The MPEG2, 
EPIC image encoders and the Mesa programs have many 
more memory accesses (Table 2a). So we should expect 
that increase in cache size will have more of an impact on 
them. This is indeed the case as shown in Figure 6a: as 
the cache size increases most memory accesses are hits 
and there are few misses and hence fewer prefetches (as 
prefetches are done on the miss stream); thus the RMCPI 
increases. The average RMCPI gain for most of the multi-
media workloads is about 60% in almost all the cache 
sizes (Figure 6a).
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Fig 6a. RMCPI graph for cache sizes L1:16k-32k-64k-128k, for 
MediaBench workloads.
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Figure 6b. GSR graph for cache sizes L1:16k-32k-64k-128k, for 
MediaBench workloads.
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4.2.3. Effect of cache associativity on prefetching. Fig-
ure 7a shows that the RMCPI  is not decreased once as-
sociativity reaches 2. Similarly the GSR also remains al-
most constant for all MediaBench workloads, as shown in 
Figure 7b. The reason for this are the same as those that 
explains the trends with varying cache sizes.
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Figure 7a. RMCPI graph for cache associativity L1:1-2-4-8 way, for 
MediaBench workloads.
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Figure 7b. GSR graph for cache associativity L1:1-2-4-8 way, for 
MediaBench workloads.
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5. Conclusion

    We have evaluated the proposed DStride prefetching 
model by  multiple-issue execution driven simulation us-
ing SimpleScalar toolset primarily on MediaBench work-
loads. On the average, the overall  relative memory  pen-
alty has been reduced by about 60-75% relative to  the 
baseline system (without prefetching). The accuracy of  
the DStride predictor is about 50-75%, and there could be  
opportunities to improve it further by tuning the 
prefetcher parameters. Immediate future work will consist 
of carrying out a  VLSI realization in order to asses cost 
and performance (in terms of operational times). Further 
study will also include adapting the design of the 
prefetcher to multi-threaded processors. 

Acknowledgments 
    We would like to  thank Sun Microsystems Singapore  
and Ed Smith at Sun Microsystems for the  support pro-
vided in this work.

References 

[1] Jean-Loup Baer, Tien-Fu Chen, "An Effective On-Chip Pre-
loading Scheme To Reduce Data Access Penalty," ACM, pp 
176-186, 1991. 

[2] Doug Joseph, Dirk Grunwald, "Prefetching Using Markov 
Predictors," IEEE Transaction on computers, Vol 48, No 2, Feb 
1999. 

[3] D.C Burger, T.M. Austin, "The SimpleScalar Tool Set, Ver-
sion 2.0," Technical  Report CS-TR-97-1342, Univ. of 
Wisconsin-Madison, Jun 1997. 
[4] John Tse, Alan Jay Smith, "CPU Cache Prefetching: Timing 
Evaluation of Hardware Implementations," IEEE Transactions 
on Computers, Vol. 47, No 5, May 1998. 

[5] T.Ozawa et al., "Cache Miss heuristics and Preloading tech-
niques for General-Purpose Programs," Proc. 28th Ann. Int’l 
Symp. Microarchitecture, pp. 243-248, Nov. 1995.

[6] S.S.Pinter and A.Yoaz, "Tango: a hardware-based data 
prefetching technique for superscalar processors", Proc. 29th 
Ann. Int’l Symp. Microarchitecture, December 1996. 

[7] www.mpeg.org

[8] John W.C. Fu, Janak H. Patel and Bob L. Janssens, "Stride 
Directed Prefetching in Scalar Processors",  IEEE 1992.

[9] Fredrick Dahlgren and Per Stenstorm, "Evaluation of 
Hardware-Based Stride and Sequential Prefetching in Shared-
Memory Multiprocessors", IEEE Trans. on Parallel and Distrib-
uted Systems, 1996.

[10] N. Jouppi, "Improving Direct-Mapped Cache Performance 
by the Addition of a Small Fully Associative Cache and 
Prefetch Buffers," Proc. 17th Int’l Symp. Computer Architec-
ture, May 1990.

[11] Subbarao Palacharla and R.E. Kessler, "Evaluating Stream 
Buffers as a Secondary Cache Replacement,", Proc. 21st Ann. 
Int’l Symp. Computer Architecture, pp. 211-222 Apr. 1994.

[12] Doug Joseph and Dirk Gurnwald, "Prefetching using 
Markov Predictors," Trans. on computers, Vol 48,  No 2, Feb 
1999.

[13] D. F. Zucker, M.J. Flynn and R.B Lee, "A Comparison of 
Hardware prefetching Techniques for MultiMedia Bench-
marks,"  TR CSL-TR-95-683, Dec. 1995.

[14] Chunho Lee, M Potkonjak and W. H. Magione-Smith, 
"MediaBench: A Tool for Evaluating and Synthesizing Multi-
media and Communications Systems," 1997.

[15] M.J. Charney and A.P Reeves, " Generalized Correlation 
Based Hardware Prefetching, " TR EE-CEG-95-1, Cornell Univ. 
Feb. 1995.

[16] H.Oehring, U.Sigmund, T.Ungerer, "MPEG2-Video De-
compression on Simultaneous Multithreaded Multimedia Pro-
cessors," IEEE, 1999.


