
DSTRIDE: Data-cache miss-address-based stride prefetching scheme
for multimedia processors

Hariprakash. G*, Achutharaman. R* and Amos R. Omondi+

*Sun Microsystems,
1 Magazine Road #07-01/13,

Singapore.
{harig,achutha}@singapore.sun.com

+School of Computer Engineering,
N4 Nanyang Avenue,

Nanyang Technological University, Singapore.
ASAmos@ntu.edu.sg

Abstract

 Prefetching reduces cache miss latency by moving data
up in memory hierarchy before they are actually needed.
Recent hardware-based stride prefetching techniques
mostly rely on the processor pipeline information (e.g.
program counter and branch prediction table) for predic-
tion. Continuing developments in processor microarchi-
tecture drastically change core pipeline design and re-
quire that existing hardware-based stride prefetching
techniques be adapted to the evolving new processor ar-
chitectures.
 In this paper we present a new hardware-based stride
prefetching technique, called DStride, that is independent
of processor pipeline design changes. In this new design,
the first-level data cache miss address stream is used for
the stride prediction. The miss addresses are separated
into load stream and store stream to increase the ef-
ficiency of the predictor. They are checked separately
against the recent miss address stream to detect the
strides. The detected steady strides are maintained in a
table that also performs look-ahead stride prefetching
when the processor stride reference rate is higher than
the prefetch request service rate.
 We evaluated our design with multimedia workloads
using execution-driven simulation with SimpleScalar
toolset. Our experiments show that DStride is very effec-
tive in reducing overall pipeline stalls due to cache miss
latency, especially for stride-intensive applications such
as multimedia workloads.

1. Introduction

 Multimedia workloads are very memory intensive and
usually generate many cache misses when run. For ex-
ample, motion compensation and audio or video com-
pression are heavily memory bounded; these programs
spend most of their runtimes stalled on memory requests.
Prefetching has long been known to significantly decrease
the cache miss latency. Increase in demands for process-
ing power and corresponding advancements in processor

pipeline design have lead to the emergence of multimedia
processors and general-purpose processors enhanced with
multimedia extensions, but more careful study is needed
in order to adopt any of the existing hardware based
stride prefetching techniques to the emerging microarchi-
tectures.
 In this paper, we propose a new design for a hardware
based stride prefetching scheme which is intended to
• operate independent of processor pipeline design

changes,
• reduce the cache miss latency, especially for
 multi-media applications.
Our design of stride prefetching uses the miss reference
stream and so is different from existing program counter
based stride prefetching schemes [1, 6, 15]. Our predictor
maintains a Stride Prediction Table (SPT) that compares
each recent miss address with several previous miss ad-
dresses to calculate all possible strides. State bits are
maintained to identify steady strides. A Steady Stride
Table (SST) maintains the steady strides detected by the
SPT and issues prefetch requests. We maintain a separate
prefetch buffer cache to avoid cache pollution that may
occur because of prefetched data replacing useful cache
blocks.
 We evaluated our design using three metrics: the
Memory Cycles Per Instruction (MCPI), which is the
number of memory cycles per instruction; Relative MCPI
(RMCPI), which is the MCPI relative to the baseline sys-
tem configuration without prefetching; and the Global
Success Ratio, which is the fraction of cache misses
which are avoided by the prefetching [4]. On average, for
multimedia workloads, our design reduces the MCPI con-
tribution by about 60-75% and the GSR is increased by
about 50-75% when compared to the baseline system con-
figuration.
 The outline of the rest of the paper is as follows. In
Section 2, we discuss related work done in hardware-
based prefetching. Section 3 describes the detailed design
and implementation of our prefetcher, DStride. In Section
4, we discuss our simulation environment and the perfor-
mance evaluation of DStride. Section 5 consists of a sum-
mary with a discussion of future work.

2. Related work in hardware-based prefetch-
ing

 Hardware-based prefetching can be classified into two
categories: program counter (PC) based scheme and data-
address based schemes [9]. PC-based scheme operates
on reference address stream, by using the PC value and
branch prediction table to determine whether to prefetch
and to initiate any subsequent prefetch request. On the
other hand data-address-based schemes operate mostly
on reference miss address stream and relies on the data
address itself to decide when to initiate a prefetch request.

2.1. PC-based prefetching schemes

 Baer and Chen [1] investigate a hardware data
prefetching scheme that uses a Reference Prediction
Table (RPT) and Look-Ahead Program Counter (LA-
PC). The RPT is a cache whose tag field contains the ad-
dress of a load/store instruction and whose data field con-
tains the last address referenced by that instruction and
the corresponding stride. The LA-PC is a secondary PC
that is used to predict the execution stream in situations
where the loop iteration time is smaller than the
memory latency. The LA-PC is modified via the Branch
Prediction Table (BPT). When the LA-PC value is that
of a load/store instruction, the next address is calculated
by adding the address with the stride of that RPT entry
and a prefetch is issued.
 The original Baer-and-Chen prefetching scheme can-
not work with superscalar processors, but Pinter and
Yoaz in their Tango have managed to modify it ap-
propriately [6]. The major difference in Tango with re-
spect to Baer and Chen are: 1) The LA-PC and RPT are
difficult to adapt to multiple issue environment.
Tango defines a Pre-PC in order to adapt to multiple-
issue processors. 2) In contrast to the LA-PC, the Pre-PC
look-ahead scheme in Tango scans only the branches
and the memory access instructions. This is done by Pre-
PC using a extended Branch Target Buffer (BTB) with
additional Program Process Graph (PPG).
 The major disadvantage of PC-based schemes is that
they very much depend on the pipeline design. There
are now several new microarchitectures, for example,
speculative execution, multiscalar, multithreaded etc.,
and PC based schemes to these architectures have yet to
be adapted to these. We think data-address-based
schemes are superior to PC based schemes because of
their inherent advantage of not depending on the under-
lying pipeline microarchitecture.

2.2. Data-address-based prefetching schemes

2.2.1. Cache prefetcher. Generally a cache satisfies pro-
cessor references by demand fetching. Cache prefetching
is the loading of a block before it is referenced by the
pipeline [4]. There are various cache prefetching policies:

One Block Look-ahead (OBL) policy, in which upon ref-
erencing a block i, the next block, i+1, is prefetched;
prefetch on miss; prefetch unconditionally; prefetch on
previous successful prefetch; and so forth. The drawback
of the cache prefetching schemes is that useless
prefetches can pollute the cache by displacing the useful
cache blocks from the cache. The other disadvantage is
that none of the cache prefetching policies above is suit-
able for "stridy" workloads.

2.2.2. Stream buffer. Jouppi introduced Stream Buffers
as a load/store latency-reduction technique [10]. The
Stream Buffer proposed by Jouppi is a FIFO stream buffer
that prefetches a sequential stream of cache lines starting
at a given address. The main drawback of the FIFO
Stream Buffer is not capable of handling non-unit strides.
 Palacharla and Kessler [11] modified FIFO stream
buffers to handle non-unit stride detection, by dynami-
cally partitioning the physical address space and detecting
the strides within the partition. In their scheme each
physical address issued by the pipeline is divided into a
tag (higher order bits) and a czone (concentration zone).
The czone is set at runtime. Two references will fall
within the same partition if their addresses have the same
tag bits. A history buffer (non-unit stride filter) and a fi-
nite state machine are then used to detect non-unit
strides. At the end of three consecutive strided refer-
ences, a stream is allocated and the entry in the history
buffer is freed. A unit-stride filter is also used.
 Setting the czone bit at runtime requires a software bit-
mask that must be individually adjusted for a given ap-
plication and architecture [11, 13]. This seems to be im-
practical for even a small set of multimedia workloads
[14]. Our stride detection logic, discussed in Section 3.3,
can be used with stream buffers to detect both unit and
non-unit strides but does not have these drawbacks.

2.2.3. Markov predictor. A Markov predictor uses the
miss-address stream as the prediction source [12]. The
Markov model relies on past references to predict future
references when a past reference is repeated. A hardware
approximation to the Morkov model maintains a prefetch
table with several past miss addresses and several pos-
sible subsequent references for each miss address. When
the current miss address matches any of the miss ad-
dresses in the prefetch table, all of the next-reference ad-
dresses associated with the address are eligible for
prefetch. The Morkov predictor works well for the pro-
grams in which the same address patterns are repeated
and its performance for instruction prefetching is better
when compared to data prefetching - but it does not
handle stride prefetching.

3. Design of DStride prefetcher
3.1. Motivation

 New developments in microarchitecture significantly
change the design of processor pipeline, so any

hardware-based stride prediction technique which closely
interacts with pipeline must be modified for every major
change in microarchitecture. For example, Bear and
Chen’s [1] PC-based prefetching scheme for scalar pro-
cessor was redesigned by Pinter and Yoaz [6] in their
Tango implementation to adopt it for superscalar (mul-
tiple issue) processors. However, PC-based stride predic-
tion schemes can only identify strides that are enclosed in
loop. Data-address based prefetching schemes detect both
strides that are enclosed in loop, but also detects those
that are not.
 As an example, consider the code fragment below. This
is taken from MPEG2 code [7] and is used in idct-
col(), which is a heavily used function in MPEG
Encode/Decode programs to calculate the two-
dimensional inverse discrete cosine transform. The access
to blk[8*i] forms the a stride access, and each access
causes a new cache line to be fetched for store operation
in a typical 16-byte block of a cache.

 static void idctcol(blk)
 short *blk;
 {
 ...
 /* fourth stage */
 blk[8*0] = iclp[(x7+x1)>>14];
 blk[8*1] = iclp[(x3+x2)>>14];
 blk[8*2] = iclp[(x0+x4)>>14];
 blk[8*3] = iclp[(x8+x6)>>14];
 blk[8*4] = iclp[(x8-x6)>>14];
 blk[8*5] = iclp[(x0-x4)>>14];
 blk[8*6] = iclp[(x3-x2)>>14];
 blk[8*7] = iclp[(x7-x1)>>14];
 }

 A data-address-based prefetching scheme can detect
the stride in this code and issue a prefetch when the third
reference to the blk[] is issued. But a PC-based stride
predictors, since it relies on the PC to identify the stride
when the loop repeats, cannot detect the stride because it
is not enclosed in a loop. The above code fragment has
unit stride, so a stream-buffer logic seems to be sufficient
to handle the prefetches. However, non-unit strides cannot
be handled by stream buffers without additional non-unit
stride detection logic to detect them. We next present the
design of an appropriate stride detector.

3.2. Basic block diagram

 DStride, the new hardware prefetcher that we propose,
consists of a Prefetch Buffer, Prediction Logic, and
Prefetching Logic, arranged as shown in Figure 1; In a
typical realization, all of the logic shown, except for the
Level-2 cache, will be on-chip.
 The Prefetch Buffer (PB) holds the predicted data,
which are prefetched ahead in time. We opted to have a
separate on-chip Prefetch Buffer to store the prefetched
data in order to avoid cache pollution in the data-cache;
the buffer is logically at the same level as the data cache.
Both the data cache and Prefetch Buffer are searched in
parallel for a match with reference addresses coming from
the pipeline. On an address match in the prefetch buffer,

the data is passed to the pipeline and the address is
passed to the prefetching logic to prefetch according to
any predicted strides.
 The Prediction Logic sits below the data cache and
uses the data cache miss address stream to predict the
future references [2, 5]. The predictor consists of Stride
Prediction Tables (SPT) that detect steady strides, by
comparing the current miss address with recent miss ad-
dresses. The SPTs have associated adder/subtracter units
to calculate the strides.

Processor Pipeline

Prefetch
 Buffer
 (PB)

Prefetcher
 Logic

Prediction Logic

Steady Stride Table
 (SST)

Stride Prediction
 Table
 (SPT)

Prefetch
 Queue

L2 Cache (unified)

L1 D-cacheL1 I-cache

Figure 1.Schematic block diagram of DStride

 The Prefetching Logic consists of a Steady Stride
Table (SST) and a Prefetch Queue (PQ). When the SPT
detects a steady stride, the corresponding entry is re-
moved from SPT and moved into SST. When a data-
cache miss address or a Prefetch Buffer hit address
matches with a SST entry, a prefetch request is issued for
the next stride address. The prefetch requests are queued
in the PQ, which acts as an interface between the on-chip
SST and the off-chip level-two cache.

3.3. Prediction logic

 A data-address based hardware predictor predicts fu-
ture references based on previous access patterns by us-
ing either the address reference stream (sequence of ad-
dresses referenced by the processor pipeline) or the miss
address stream (the data-cache miss addresses).
 In the DStride predictor, the miss address stream is
used to detect the strides. Miss addresses fed into Predic-
tion Logic are aligned to the data-cache block size and so
the predicted strides are of multiples of data-cache block
size. In the case of strides that which are smaller than
the data-cache block size, accesses are to the same cache
line. When the smaller strides cross the cache block
boundary, they cause cache misses, which are tracked by

the prediction logic in the miss address stream in order to
correlate and identify the strides.

3.3.1. Stride Prediction Table. The main component of
the prediction logic is the Stride Prediction Table (SPT).
The predictor uses two different SPTs to track the load
and store addresses separately (Load SPT and Store SPT)
to increase the efficiency of the predictor. The rationale
for the separate SPTs is given below. The SPT records
recent miss addresses and compares the current input ad-
dress with the previous addresses to calculate the strides
between them. In other words, the SPT calculates all pos-
sible strides for an address by comparing it with a set of
recent addresses. From the comparison, SPT can calculate
several different strides. These addresses forms a window
for comparison to detect the strides. For example, con-
sider the loop

int a[1024],b[1024],c[1024];
register int i,j,k,l;

for(l=0;l<1024;l++){
a[i] = 10; i +=10;
b[j] = 20; j +=20;
c[k] = 30; k +=30;

}

 The array a,b and c are accessed after every three
memory references. For the SPT to detect the stride of
each array, the window of comparison should be at least
3. The schematic block diagram of a DStride predictor
with a 4-window SPT is shown in Figure 2.

0

1

2

3

Predicted
Address#1

Predicted
Address#2

Predicted
Address#3

Predicted
Address#4

Access
Address

Processor Reference Address Stream

L1 D-Cache

Stride #1

Stride #2

Stride #3

Stride #4

Load Hit

Head

Tail

Load SPT
Store SPT

Load strides
Store strides

dl1 load miss addr.
dl1 store miss addr

Store Hit

DStride Predictor

Demand
Fetch
Reques

SST

PB Hit L1-D miss

Prefetch Buffer
 (PB)

SST miss

Adder

Prefetch request to PQ,
Prefetch completion from PQ

Load SPT path
Store SPT path

Prefetch Queue
 (PQ)

L2 Cache

Prefetch request
from SST

Prefetch completion
to SST

Figure 2. DStride with 4-window SPT hardware block diagram

An SPT entry consists of four fields:
• miss address, which holds a data-cache miss address;
• strides, which holds a fixed number of strides;
• predicted addresses - one next-address for each

stride, based on the current miss address and the
stride;

• two state bits that partially encode the past history
and are used to determine the steady state for predic-
tion.

The SPT stride calculation is explained with an example
of a 4-window SPT, shown in Table 1.

Strides Predicted Addresses
Miss
addresses

S0 S1 S2 S3 Pa0 Pa1 Pa2 Pa3

d0

d1

d2

d3

(d1-d0) (d2-d0) (d3-d0) (d0’-d0)

(d2-d1) (d3-d1) (d0’-d1) (d1’-d1)

(d3-d2) (d0’-d2) (d1’-d2) (d2’-d2)

(d0’-d3) (d1’-d3) (d2’-d3) (d3’-d3)

d1+S(0,0) d2+S(1,0) d3+S(2,0) d0’+S(3,0)

d2+S(0,1) d3+S(1,1) d0’+S(2,1) d1’+S(3,1)

d3+S(0,,2)d0’+S(1,2) d1’+S(2,2)d2’+S(3,2)

d0’+S(0,3)d1’+S(1,3) d2’+S(2,3) d3’+S(3,3)

Table 1. Four-window Stride Prediction Table

Let dn be the current miss address, dx be the xth recent
miss address against which comparison is made, and dx’
be the current miss address after wrap around of the win-
dow and N be the SPT window size. If the nth stride cor-
responding to dx is sxy ,
where

y = [(N-1)+(n-x)] modulo N
then

sxy = dn - dx

And if the nth predicted address corresponding to dx is
paxy, then

paxy = dn + sxy

 A set of adders/subtracters that operate in parallel are
used to carry out the above calculations for all the recent
miss addresses dx, where 0<= x <N, within the window
N. When the window is filled, the miss address values are
stored by wrapping around in a circular fashion. Simi-
larly, the strides and predicted addresses wrap around in a
circular fashion. When n equals N, the miss address wraps
around and occupies the 0th entry and n becomes 0.
 Every miss address is associatively searched for among
the predicted addresses in the Load SPT and the Store
SPT. On a match, the corresponding state bits are updated
and the next predicted address is calculated and stored; on
a miss, several strides are calculated as explained above.

 3.3.2. SPT states. State bits are used to improve the ac-
curacy of the prediction by filtering out irregular and
false strides. Two bits are maintained for each predicted
address and are a partial encoding of the history. The en-
coding in these two bits direct future actions on prefetch-
ing.

The four states defined by the two bits are
• S_INIT, the initial state, which is set when a pre-

dicted address is added
• S_TRANS, the transient state, which indicates when

the prediction logic is not sure of whether the predic-
tion is correct or not

• S_STEADY, the steady state, which is when the pre-
diction logic determines that the prediction is correct
and the stride could be consistent for a while

• S_NOSTATE, which indicates that the entry is free.

When a data-cache miss address matches a predicted ad-
dress, one of two state transitions occurs :
• If the current state is S_INIT, then the state is

changed to S_TRANS.
• If the current state is S_TRANS, then the state is

changed to S_STEADY and the SPT entry is moved
to the SST. After moving the entry to SST, the state
is changed to S_NOSTATE to free the SPT entry.

3.3.3. Load SPT and Store SPT. Programs whose access
patterns are stridy in nature seem to have sequence of
Load or Store accesses to memory. Consider for example,
the code fragment

char *memcpy(b,a,n)
char *b;
register char *a;
{

 register char *d = b;
while(n--)

*d++ = *a++;
return(b);

}

There are two streams of accesses in this code: the Load
Stream is formed by the sequence of Load instructions
that are issued to access the pointer a; and the Store
Stream is formed by the sequence of Store instructions
that are issued to access the pointer d. The loop issues
alternate accesses to the two streams. If the SPT is uni-
fied, it compares the current access address with several
recent addresses to identify any strides, alternate accesses
to Load Stream and Store Stream cause the SPT to com-
pare the Load Stream addresses with the Store Stream
addresses, which results in useless strides and pollution of
the SPT. In PC-based stride predictors, alternate access to
the Load and Store streams is automatically taken care
of, since only one instruction can be tagged with the PC
and it cannot be both a Load and a Store. In the DStride
predictor, the pollution is avoided by maintaining two
separate SPTs - one for the Load stream and one for the
Store stream. The Load SPT compares the current Load
miss address with only the recent Load miss addresses
and tries to identify a steady stride. Similarly, the Store
SPT compares the current Store miss address with only
the recent Store miss addresses to identify a steady stride.
Thus, the SPT pollution is avoided, and the efficiency of
the predictor is significantly improved.

3.4. Prefetching Logic

 The Prefetching Logic issues prefetch requests to the
next level of the memory hierarchy. The logic consists of
the Steady Stride Table (SST), which maintains the steady
strides and queues the prefetch requests to Prefetch Queue
(PQ).

3.4.1. Steady Stride Table. Steady strides detected by
SPT are moved into the SST, which maintains an entry
for every such stride. An SST entry and its associated
logic are shown in Figure 3. The SST logically sits be-
tween the level-one caches (the data-cache and the
Prefetch Buffer) and level-two cache. The main function
of the SST is to handle look-ahead prefetch. When the
processor stride reference rate is higher than the prefetch
request service rate, the prefetched data may not be avail-
able in time for use. In order to overcome this problem,
the SST does prefetching in advance by increasing the
look-ahead distance.

PA LA-PA nLA-PAFlag Stride LA-Dist

Prefetch Request

+

X+

L1 D-cache miss address (or)
 PB hit address

+

On PA address match
On Prefetch completion

Figure 3. An entry of a Stredy Stride Table

The SST entry has six fields :
• the Predicted Address (PA)
• a Look-ahead Predicted Address (LA-PA)
• a Flag that indicates prefetch state information, as

IDLE - no outstanding prefetch
PENDING - current prefetch is pending
PF_PENDING - previous prefetch is pending

• a next Look-Ahead Predicted Address (nLA-PA)
• Stride, which is the stride value
• the Look-ahead stride Distance (LA-Dist)

 PA and Stride are initialized from the SPT when a
steady stride is identified by the SPT. Initially the LA-Dist
is set to 1. LA-PA is initialized to the PA value and a
prefetch request is issued to the PQ. Flag is set to PEND-
ING because a prefetch request has been issued. nLA-PA
is calculated as LA-PA + Stride and stored. On the
completion, of a prefetch the PENDING flag is cleared
and set to IDLE , and the nLA-PA value is moved to LA-
PA.
 There are two input streams to SST: the data-cache
miss stream and prefetch-buffer hit stream. The input ad-
dress is associatively searched for in the PA entries of the

SST. On a miss, the input address is passed to the predic-
tion logic (SPT). On a match, PA is advanced to the next
stride value. The prefetch is issued for the next stride ad-
dress only when the flag is in IDLE state. In this case, the
next stride address is available in the LA-PA. The prefetch
is issued for LA-PA value, the flag is set to PENDING,
and nLA-PA is advanced to LA-PA + Stride. On prefetch
completion, the PENDING flag is cleared and set to
IDLE, and nLA-PA value is moved to LA-PA.
 When the flag is in PENDING state, it indicates that an
outstanding prefetch is in progress. In this case, the input
address is also compared with LA-PA to see if the input
address itself corresponds to a pending request. If the in-
put address is the same as the LA-PA, then it means that
PA has caught up with LA-PA. This scenario can happen
when the rate at which the stride is accessed by the pipe-
line is higher than the rate at which the prefetch requests
are serviced and it can happen more easily with shorter
loops and in cases where the strides accesses are issued
quickly. In order to make the data available earlier than it
is actually needed, LA-Dist is incremented every time in
the powers of two, but, it is not incremented beyond LA-
Limit in order to avoid unnecessary look-ahead
prefetches. The new look-ahead address is calculated as
LA-PA = PA + (Stride * LA-Dist). A prefetch is issued on
the recalculated LA-PA , and the flag is set to PENDING.
nLA-PA is advanced to LA-PA + Stride. On prefetch
completion the PENDING flag is cleared and set to IDLE,
and nLA-PA value is moved to LA-PA.
 When the flag is in PENDING state and the input ad-
dress does not match the LA-PA, it means that the previ-
ous prefect request is not yet completed. The flag is set to
PF_PENDING to notify the SST to issue a prefetch on
completion of the previous pending prefetch. On such a
completion, nLA-PA is moved to LA-PA and a prefetch is
issued, PF_PENDING is cleared, and PENDING is set.
 To improve the prediction accuracy, the prefetch re-
quests are not issued for data that is already present in the
data-cache or in the Prefetch Buffer. When the prefetch
address raises a trap for address translation, or when an
out-of-range address is issued by the prefetching logic,
the prefect request is discarded. A pseudo-LRU policy is
used for replacing SST entries.

3.4.2. Prefetch Queue. Prefetch requests and demand-
fetch requests (data-cache misses) are queued in the
Prefetch Queue (PQ). Demand-fetch requests get priority
over prefetch requests. The PQ is located just before the
level-two cache and acts as a data router when the data
arrives back from that cache. The PQ maintains a table of
requests to be serviced by the level-two cache. Each en-
try of the PQ has the format shown in Figure 4.

Address Type State

Figure 4. An entry of a Prefetch Queue

The entry consists of three fields :
• Address, which is the prefetch/demand fetch request

address.
• Type, which indicates the type of requests as

D - demand fetch request.
P - prefetch request.

• State, which indicates the state of a request - IDLE or
 PENDING

 Request addresses are associatively searched for in the
Address field of the PQ. If a demand fetch request is al-
ready entered in the PQ as a prefetch request, then the
prefetch request is converted into a demand fetch by
changing the type from P to D and SST is notified to clear
the PENDING flag for this request. Duplicate requests are
not queued and are simply discarded. When the request is
selected for service by the level-two cache, the state is
set to PENDING. On completion of the request, the data
is routed to the data-cache or the Prefetch Buffer, accord-
ing to the type of the request and the PENDING state is
cleared to IDLE.

4. Simulation study and performance

 We used Wisconsin SimpleScalar version-2.0 toolset
[3]; this is an execution driven superscalar processor
simulator with out-of-order issue capability. We inte-
grated our DStride prefetcher into the SimpleScalar and
studied the behavior with MediaBench workloads [14]
and with a small set of commonly used real programs.
The workload characteristics are summarized in Table 2a
and Table 2b.

Load% Store% Branch%

matmul
100x100

 kernel6
(livermore loop)

gzip

gunzip

MPEG2encode

MPEG2decode

87.5

81.8

70.3

84.9

92.6

63.4

12.5

18.2

29.7

15.1

7.4

36.6

2.5

3.9

18.3

17.9

16.0

11.5

Table 2a. MediaBench workload characteristics

16074334

73628

9956337

2126244

924603897
82275834

EPIC coder
(epic)
EPIC decoder
(unepic)

Mesa -mipmap¹

Mesa -osdemo²
Mesa -texgen³

G.721-encode

G.721-decode

7945206

1794700

23676377

7873475

32203190

54764749

55103707

89.4 10.6 15.0

56.1

67.1

69.2

65.4

77.2

76.2

43.9

32.9

30.8

34.6

22.8

23.8

21.1

16.6

18.3

12.9

23.0

23.0

memcpy-10k 75414 68.4 31.6 8.0

 Memory
references

MediaBench
 Multimedia
 workloads

 General
Applications

 Memory
references Load% Store% Branch%

Table 2b. General application workload characteristics
 No. of
 Executed
instruction

 No. of
 Executed
instruction

252120

80179377

280676

35608364

7667259

1946374852

75854342

55305205

7659981

74987642
24930922

105477995

319264177

307575444

Description

Efficient Pyramid Image
Compression - bi-orthogonal
pryamid transform coder,
decoder

Clone OpenGL 3-D graphics
library. ¹ executes texture map-
ping, ² executes rendering pipe-
line, ³ generates texture mapping

Standard for high quality digital
video transmission uses DCT
for coding, IDCT for decoding.

CCITT Voice compression

We studied the performance of DStride prefetcher with
various cacheline sizes, cache sizes and associativity by
comparing with a baseline system. The default system
configuration of the DStride and the baseline system are
given in the Table 3.

System parameters
Default Values

Level-1
D-cache

Size - 16K, Cacheline - 32 bytes, Associativity - 1,
Dual ported Tag, Write Allocate, PIPT.

Level-2
 cache

Size - 4MB, Cacheline - 64 bytes, Associativity - 1,
Write Back, PIPT.

SPT 8 Window - Load/Store SPT

SST 256 Steady Stride entries

Prefetch Buffer 1024 cache lines

Prefetch Queue 4 entries

Table 3. Default system configuration

Baseline DStride

Level-1
D-cache

Level-2
 cache

mem-bus
 width

8 bytes

LA-Limit 16 strides

mem-bus
 width

4.1. Evaluation Metric

 The studies of J. Tse and A. J. Smith in [4] clearly
showed, that a decrease in the cache miss ratio attribut-
able to prefetching does not necessarily actually lead to an
improvement in CPU performance. Even when the miss
ratio decreases, prefetching can degrade performance be-
cause of prefetch lookups on busy cache address tag ar-
rays and a busy memory bus on prefetch address transfers
and data fetches. We consider three important metrics
taken from [4] to evaluate our design - Cycles Per Instruc-
tion contributed by Memory access (MCPI), Relative
MCPI (RMCPI) and Global Success Rate (GSR). MCPI is
defined as

MCPI =
total memory access penalty

total no. of instructions executed

The total memory access penalty is a sum of data-cache
miss penalty and partial data-cache miss penalty - which
is the portion of the penalty for those miss requests that
were already requested by the prefetcher (due to late
prefetch).

We use Relative MCPI to compare the results of DStride
prefetching scheme with the same system without
prefetching. The RMCPI for the baseline system (without
prefetching) is 1. RMCPI is defined as

MCPI with prefetching
RMCPI =

MCPI without prefetching in the same system

To evaluate the accuracy of our model, we chose Global
Success Ratio (GSR) as a metric. The GSR is the fraction
of cache misses which are completely avoided or partially
avoided (i.e., prefetches already in progress). The GSR is
defined as

Total number of correct prefetches

(Total number of correct prefetches + Total number of true cache misses)
GSR =

A GSR of zero implies that a prefetching strategy does
not save any misses, while a GSR of one implies all the
cache misses are avoided. The GSR for the baseline sys-
tem is 0. The goal is to reduce the MCPI, RMCPI and to

increase the GSR with data prefetching using DStride
model.

4.2. Performance Evaluation

 We studied the effect of DStride prefetching statistics
by varying the cache block sizes, cache sizes and as-
sociativity of the data-cache. We chose DStride’s main
parameter, the SPT size as 8 entries; smaller SPT size,
such as four, will not be sufficient to be the prediction
window as it cannot cover the strides that of greater
than four. On the other hand, a prediction window of 16
entries does not seems to be cost effective. We chose 8
entry SPT as this seems to provide good coverage and
allows a cost-effective implementation.

4.2.1. Effect of cache block size on prefetching. In Fig-
ures 5a and 5b, the MCPI is plotted as a function of cache
block size for general applications and MediaBench ap-
plications.

memcpy10k kernel6 gzip gunzip matmul100
0

0.04

0.08

0.12

0.16

0.2

0.24

M
C

P
I

Figure 5a. MCPI graph - base model Vs DStride for cacheline sizes
L1:32-64-128 bytes; L2:64-128-256 bytes, for general applications

 L1-32:L2-64 baseline L1-32:L2-64 DStride

 L1-64:L2-128 baseline L1-64:L2-128 DStride

 L1-128:L2-256 baseline L1-128:L2-256 DStride

epic unepic MESA-
mipmap

MESA-
osdemo

MESA-t
exgen

G.721-d
ecode

G.721-e
ncode

MPEG2
-decode

MPEG2
-encode

0

0.013

0.026

0.039

0.052

0.065

M
C

P
I

Figure 5b. MCPI graph - base model Vs DStride for cacheline sizes
L1:32-64-128 bytes; L2:64-128-256 bytes, for MediaBench

applications

 L1-32:L2-64 baseline L1-32:L2-64 DStride

 L1-64:L2-128 baseline L1-64:L2-128 DStride

 L1-128:L2-256 baseline L1-128:L2-256 DStride

On average for, MediaBench video applications, DStride
reduces the MCPI up to 75%, for general applications
71% gain in MCPI is obtained. We observe when cache
blocks are 32 bytes long, DStride performs better for Me-
diaBench applications, whereas general applications per-
form better when cache block size is 64 byte long. When
cache block size increases, more cycles are required to
load a prefetched block; because of the constant bus width
of 8 bytes used in our simulation. Consequently, most of
the prefetch requests in progress are converted to partial
miss when the stride reference rate is higher than the
prefetch load latency. This phenomenon is observed as
increase in RMCPI in all the applications for 128 bytes
level1-cache with 256 bytes level-two-cache shown in
Figures 5a, 5c and Figures 5b, 5d, except epic. G.721 en-
coder and decoder have insignificant stride patterns, this
is the reason for the RMCPI of these programs are close
to that of the baseline system.

memcpy10k kernel6 gzip gunzip matmul100
0

0.25

0.5

0.75

1

R
M

C
P

I

Figure 5c. RMCPI graph for cacheline sizes L1:32-64-128 bytes;
L2:64-128-256 bytes, for general applications.

L1-32:L2-64 DStride

L1-64:L2-128 DStride

L1-128:L2-256 DStride

baseline

epic unepic MESA-
mipmap

MESA-o
sdemo

MESA-t
exgen

G.721-d
ecode

G.721-e
ncode

MPEG2-
decode

MPEG2-
encode

0

0.25

0.5

0.75

1

R
M

C
P

I

Figure 5d. RMCPI graph for cacheline sizes L1:32-64-128 bytes;
L2:64-128-256 bytes, for MediaBench workloads.

L1-32:L2-64 DStride

L1-64:L2-128 DStride

L1-128:L2-256 DStride

baseline

memcpy10k kernel6 gzip gunzip matmul100
0

0.25

0.5

0.75

1

G
SR

Figure 5e. GSR graph for cacheline sizes L1:32-64-128 bytes;
L2:64-128-256 bytes, for general applications

L1-32:L2-64 DStride

L1-64:L2-128 DStride

L1-128:L2-256 DStride

For general applications, we observe that an average GSR
is about 75% (Figure 5e), and for MediaBench applica-
tions it is about 50% (Figure 5f).

epic unepic MESA-
mipma
p

MESA-
osdem
o

MESA-t
exgen

G.721-d
ecode

G.721-e
ncode

MPEG2
-decod
e

MPEG2
-encod
e

0

0.25

0.5

0.75

1

G
SR

Figure 5f. GSR graph for cacheline sizes L1:32-64-128 bytes;
L2:64-128-256 bytes, for MediaBench workloads.

L1-32:L2-64 DStride

L1-64:L2-128 DStride

L1-128:L2-256 DStride

4.2.2. Effect of cache size on prefetching. The results in
Figure 6a show that there is no significant gain in RMCPI
or GSR as compared to that of 16k cache size with larger
size caches. DStride with 16k cache size in all the Media-
Bench applications shows best performance. The MPEG2,
EPIC image encoders and the Mesa programs have many
more memory accesses (Table 2a). So we should expect
that increase in cache size will have more of an impact on
them. This is indeed the case as shown in Figure 6a: as
the cache size increases most memory accesses are hits
and there are few misses and hence fewer prefetches (as
prefetches are done on the miss stream); thus the RMCPI
increases. The average RMCPI gain for most of the multi-
media workloads is about 60% in almost all the cache
sizes (Figure 6a).

epic unepic MESA-
mipmap

MESA-o
sdemo

MESA-t
exgen

G.721-d
ecode

G.721-e
ncode

MPEG2-
decode

MPEG2-
encode

0

0.25

0.5

0.75

1

R
M

C
P

I

Fig 6a. RMCPI graph for cache sizes L1:16k-32k-64k-128k, for
MediaBench workloads.

L1-16k DStride L1-32k DStride

L1-64k DStride L1-128k DStride

baseline

epic unepic MESA-
mipmap

MESA-
osdemo

MESA-t
exgen

G.721-d
ecode

G.721-e
ncode

MPEG2
-decode

MPEG2
-encode

0

0.25

0.5

0.75

1

G
SR

Figure 6b. GSR graph for cache sizes L1:16k-32k-64k-128k, for
MediaBench workloads.

L1-16k DStride L1-32k DStride

L1-64k DStride L1-128k DStride

4.2.3. Effect of cache associativity on prefetching. Fig-
ure 7a shows that the RMCPI is not decreased once as-
sociativity reaches 2. Similarly the GSR also remains al-
most constant for all MediaBench workloads, as shown in
Figure 7b. The reason for this are the same as those that
explains the trends with varying cache sizes.

epic unepic MESA-
mipmap

MESA-
osdemo

MESA-t
exgen

G.721-d
ecode

G.721-e
ncode

MPEG2
-decode

MPEG2
-encode

0

0.25

0.5

0.75

1

R
M

C
P

I

Figure 7a. RMCPI graph for cache associativity L1:1-2-4-8 way, for
MediaBench workloads.

L1-1way DStride L1-2way DStride

L1-4way DStride L1-8way DStride

baseline

epic unepic MESA-
mipma
p

MESA-
osdem
o

MESA-t
exgen

G.721-d
ecode

G.721-e
ncode

MPEG2
-decod
e

MPEG2
-encod
e

0

0.25

0.5

0.75

1

G
SR

Figure 7b. GSR graph for cache associativity L1:1-2-4-8 way, for
MediaBench workloads.

L1:1way DStride L1:2way DStride

L1:4way DStride L1:8way DStride

5. Conclusion

 We have evaluated the proposed DStride prefetching
model by multiple-issue execution driven simulation us-
ing SimpleScalar toolset primarily on MediaBench work-
loads. On the average, the overall relative memory pen-
alty has been reduced by about 60-75% relative to the
baseline system (without prefetching). The accuracy of
the DStride predictor is about 50-75%, and there could be
opportunities to improve it further by tuning the
prefetcher parameters. Immediate future work will consist
of carrying out a VLSI realization in order to asses cost
and performance (in terms of operational times). Further
study will also include adapting the design of the
prefetcher to multi-threaded processors.

Acknowledgments
 We would like to thank Sun Microsystems Singapore
and Ed Smith at Sun Microsystems for the support pro-
vided in this work.

References

[1] Jean-Loup Baer, Tien-Fu Chen, "An Effective On-Chip Pre-
loading Scheme To Reduce Data Access Penalty," ACM, pp
176-186, 1991.

[2] Doug Joseph, Dirk Grunwald, "Prefetching Using Markov
Predictors," IEEE Transaction on computers, Vol 48, No 2, Feb
1999.

[3] D.C Burger, T.M. Austin, "The SimpleScalar Tool Set, Ver-
sion 2.0," Technical Report CS-TR-97-1342, Univ. of
Wisconsin-Madison, Jun 1997.
[4] John Tse, Alan Jay Smith, "CPU Cache Prefetching: Timing
Evaluation of Hardware Implementations," IEEE Transactions
on Computers, Vol. 47, No 5, May 1998.

[5] T.Ozawa et al., "Cache Miss heuristics and Preloading tech-
niques for General-Purpose Programs," Proc. 28th Ann. Int’l
Symp. Microarchitecture, pp. 243-248, Nov. 1995.

[6] S.S.Pinter and A.Yoaz, "Tango: a hardware-based data
prefetching technique for superscalar processors", Proc. 29th
Ann. Int’l Symp. Microarchitecture, December 1996.

[7] www.mpeg.org

[8] John W.C. Fu, Janak H. Patel and Bob L. Janssens, "Stride
Directed Prefetching in Scalar Processors", IEEE 1992.

[9] Fredrick Dahlgren and Per Stenstorm, "Evaluation of
Hardware-Based Stride and Sequential Prefetching in Shared-
Memory Multiprocessors", IEEE Trans. on Parallel and Distrib-
uted Systems, 1996.

[10] N. Jouppi, "Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully Associative Cache and
Prefetch Buffers," Proc. 17th Int’l Symp. Computer Architec-
ture, May 1990.

[11] Subbarao Palacharla and R.E. Kessler, "Evaluating Stream
Buffers as a Secondary Cache Replacement,", Proc. 21st Ann.
Int’l Symp. Computer Architecture, pp. 211-222 Apr. 1994.

[12] Doug Joseph and Dirk Gurnwald, "Prefetching using
Markov Predictors," Trans. on computers, Vol 48, No 2, Feb
1999.

[13] D. F. Zucker, M.J. Flynn and R.B Lee, "A Comparison of
Hardware prefetching Techniques for MultiMedia Bench-
marks," TR CSL-TR-95-683, Dec. 1995.

[14] Chunho Lee, M Potkonjak and W. H. Magione-Smith,
"MediaBench: A Tool for Evaluating and Synthesizing Multi-
media and Communications Systems," 1997.

[15] M.J. Charney and A.P Reeves, " Generalized Correlation
Based Hardware Prefetching, " TR EE-CEG-95-1, Cornell Univ.
Feb. 1995.

[16] H.Oehring, U.Sigmund, T.Ungerer, "MPEG2-Video De-
compression on Simultaneous Multithreaded Multimedia Pro-
cessors," IEEE, 1999.

