
Abstract
A homogeneous system of PCs, workstations, minicom-

puters, etc. connected together via a local area network or
wide area network represents a large pool of computational
power. However, in a network of PCs and Workstations trans-
parency is not provided, and hence, users are aware of other
machines. PARDISC is a parallel programming environment,
which provides the needed transparency as a scalable
OpenFrame Computing Model. PARDISC stands for PARallel
and DIStributed Computing on homogeneous network. It
supports three models of computing by providing the
functionalities required to view any homogeneous network
as a Loosely Coupled Parallel Computer, or Processor Pool
Architecture, or Cluster of Workstations.

 PARDISC aims at providing a cost effective parallel and
distributed programming environment to the academic and R
& D institutions since, it employs the existing well estab-
lished Local Area Network (LAN) network and models it to
support both the paradigms. This paper presents an over-
view, design and architecture, which discusses how PARDISC
can be used to configure the network as loosely coupled
parallel machine, processor pool architecture, and distrib-
uted computing environment with Logical Network Connec-
tivity. Software architecture discusses configuration serv-
ers, client processes, and processor pool servers and pro-
cess communication interface of PARDISC. We end the pa-
per with a description of some issues involved in its imple-
mentation on UNIX platform, and porting guidelines and its
suitability for parallel programming.
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1.   Introduction
High speed network and improved microprocessor perfor-
mance are making networks of workstations an appealing
vehicle for parallel computing [5]. By relying solely on com-
modity hardware and software, network of workstations can

offer parallel processing at low cost.  A network of worksta-
tions multiprocessor can be realized as a processor bank in
which dedicated processors provide computing cycles, or it
can consist of dynamically varying set of machines that per-
form long running computations during idle periods. In this
case, the hardware cost is essentially zero, since many orga-
nizations already have extensive workstation networks.

In terms of performance, network of workstations approach
or exceed supercomputing performance for some applications.
The problem of locating and efficiently utilizing the resources
in a network is an important factor [11]. PARDISC is designed
to allow users to utilize the computing power of the network
for executing user tasks, thereby providing them with an ac-
cess to computational resources far beyond that provided
by a standard system.

Several working systems [2, 4, 7] have been built which
offers some type of distributed computation. In [9], a system
has been described based on Butler system which allows the
users to execute jobs on remote workstations. It used a cen-
tral idle machine registry to find a candidate idle machine. A
distributed operating system, MACH-1 based on worksta-
tion model has been described in [3]. It is a microkernel based
operating system in which user programs can run remotely
when a specific machine gets overloaded. Amoeba [13] is a
distributed operating system based on the processor pool
concept. It makes a collection of CPUs and I/O devices act
like a single computer. The PARAM 9000 Supercomputer
supports both the Massively Parallel Processing (MPP) and
Cluster Computing personalities [8]. In the MPP personality,
compute nodes are loaded with PARAS microkernel and sys-
tem servers, and service nodes are loaded with Solaris (Sun
OS). Whereas, in the alternate personality all the nodes are
configured as service nodes.

PARDISC provides a software model of integrated solu-
tion that is not found in a single unit in the earlier systems
without any changes in the underlying current setup includ-
ing network and operating system.
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2.   PARDISC at a Glance

The main aim of this work is to build a transparent distributed
environment, which is flexible, cost effective, and simpler
parallel environment. PARDISC is a software model which
provides the best of both worlds, Parallel and  Distributed. It
uses the existing network of homogeneous computers to run
parallel programs using logical connectivity method and to
execute distributed programs utilizing the power of other idle
computers and pool processors in the network. The basic
idea is to provide the users with the illusion of a single pow-
erful time-sharing system, when, in fact the system is imple-
mented on a collection of machines, potentially distributed
across the network. The model of the PARDISC is depicted
in Figure 1.

PARDISC is typified by specialized components such as
PARDISC server, which includes configuration server, re-
source server, and processor pool server. In each of the three
configuration supported by PARDISC viz. Loosely Coupled
Parallel Machine (LCPM) [6], Processor Pool Architecture
(PPA) [1], and Distributed Computing Environment (DCE), it
has a central server, running on one of the designated nodes
(computers with main processor and memory), coordinating
with loader servers, running on each of the other nodes,
specific to the configuration.

PARDISC server configures the group of computers logi-
cally to the  required topology and it allocates idle machines
and pool processors for the users on demand. As a LCPM,
the network can be configured to standard topologies such
as tree, mesh, cube etc., or user defined topologies suitable
to the problem domain. These topologies are logically con-
nected through configuration server, provided by the
PARDISC. As a PPA, user can make use of dedicated nodes

for parallel and distributed applications. As a DCE, PAR-
DISC provides a rich set of commands such as PARCPL (Par-
allel Compile), PARRUN (Parallel Run), PARMAKE (Parallel
Make) etc., to distribute user tasks across the network trans-
parently.

The network can be configured into any of the two modes,
parallel or distributed or both, with the usage of two different
configuration files. Each node maintains a per-process node
connectivity status. It enables to identify neighborhood
nodes. The configuration server maintains the global per-
process connectivity information. The interprocess commu-
nication between processes in and across processors is pro-
vided by Process Communication Interface (PCI).

PCI provides two modes of communication: point-to-point
and collective communication (broadcast and multicast),
which are layered over the basic primitives such as send()
and receive().

3.   Software Architecture
The network can be configured in three aforementioned ar-
chitectures  by  using  different  system  configuration  files.
It contains the following information about the network con-
figuration:

�   number of nodes in the network,
�   number of Processor Pool/DCE/LCPM nodes,
�   maximum number of tasks that can be loaded per node,
�   resources available on each node,
�   default specification, etc.

The PARDISC server provides three different functional
services depending on the  architecture. It works as Configu-



ration Server in case of LCPM, Processor Pool Server in case
of PPA, and as a Resource Server in case of DCE architec-
ture. All other nodes except PARDISC server node register
their network addresses and ports with the PARDISC server
at boot time.

Loosely Coupled Parallel Machine (LCPM)

The parallel application can be structured as follows:
�  As a set of application-level instruction sequence, we call

subtasks.
�   As a set of processing module that executes subtasks.
�   As a master module (root), generates new subtasks based

on the result of the other subtasks and detects sufficient
condition for termination.

The application can use different processors for the ex-
ecution of subtasks.  Each processor executes one subtasks
and passes the output to the master task, which then redi-
rects the final results to the client machine from which the
user is interacting. LCPM configuration is best suitable for
such kind of problem domains.

The components of LCPM model are configuration server,
load server, and PARDISC loader. (See Figure 2) A configura-
tion server, which runs on a single  dedicated  machine, is
responsible  for  establishing  the logical  connection among
the other nodes according to the defined topology (tree,
mesh, cube, etc., or user defined  topologies). A load server
runs on each of the other nodes (except configuration sever
node) and is  responsible  for  (loading  and)  spawning of
tasks. PARDISC loader is the front end user interface, which
loads the user tasks on remote nodes, assigned by the con-
figuration server.

A configuration file allows the user to specify any topol-
ogy in LCPM. It  consists of configuration and loading sec-
tions. Configuration section specifies the topology and the
relation of each node with its neighborhood nodes and load-
ing section specifies the placement of tasks on nodes. The

typical format of configuration file is as follows:
# CONFIG PART
TOPOLOGY: TREE
node 1 is a PARENT
node 2 is LEFT CHILD of node1
node 3 is RIGHT CHILD of node1
# LOADING PART
load parent.out on node1
load lchild.out on node2
load rchild.out on node3

The node1 refers to the root (may be the node from  where
the job has been submitted) whereas, the node2, .., nodeN
are other nodes of the topology.

PARDISC loader sends the configuration information to
the configuration server, which allocates requested number
of nodes (by PARDISC loader) by accessing its internal re-
source table and creates the topology table. Typically, the
topology table contains the following information:

�   topology name
�   role of each node in the topology (e.g., PARENT, CHILD,

etc.).
�   immediate neighbors and their relation to one another.
�   group id and node ids of all the nodes in the topology.
�   originator id (root node id)

Configuration server sends the ALLOCATE_REQ mes-
sage to all the load servers running on the allocated nodes
for the current job. In response to this message all the node
servers create communication port to load the tasks and reg-
isters the same with the configuration server. Configuration
server updates its (current group) topology table with the
communication ports, and sends this table to all the load
servers of the current job and to the PARDISC loader.
PARDISC loader downloads the user tasks to the load server
communication ports of the configured nodes according to
the user specified configuration.

Once the tasks are loaded on the respective nodes, they
start executing and the tasks can communicate with other
tasks of its topology  using PCI calls. (Unlike any message
passing interface, PCI allows to use logical node identifier
like PARENT, CHILD, etc. which are specified in  configura-
tion file.) Since every tasks has the topology table (shares
with load server), any one can communicate with its related
neighbor within their topology. On complete execution of the
job, PARDISC loader informs the configuration server to re-
lease the resources allocated for the job.

Processor Pool Architecture (PPA)

In PPA, all the computing power of a network is located in
one processor pool, which consists of multiple CPUs each
with its local memory and network connections. Users can
be assigned as many CPUs as they need for short periods by
the Processor Pool (PP) server after which they are returned



to the pool, so that other users can make use of them. There
is no concept of ownership here; all the processors  belong
equally to everyone. Many parallel and concurrent applica-
tions performance may not be satisfactory, if they scheduled
by traditional time-sharing systems, but with dedicated pro-
cessors some parallel applications performance are improved.
Processor pool model is the best suited for this kind of appli-
cations. The PPA of PARADISC is shown in Figure 3.

In a LAN each node has a processor and local memory. A
group of such nodes collectively form the Processor Pool.
The nodes which are not part of the pool act as client ma-
chines. User logs into the system only through the client
machines, which are used as dummy terminals. Processor
Pool server runs on a designated node to manage the pool
processors. User submits tasks to the client machine through
the PARDISC loader, which in turn requests the PP server to
allocate require number of nodes. PP server allocates the
requested number of processors form the pool and returns
the corresponding node-ids and port-ids of the load server
to the client. The client after acquiring the node-ids, starts
downloading the user tasks to the appropriate nodes. Load
server spawns the tasks on its node and redirects the results
to the owner machine. Finally, on completion of the tasks,
client requests the PP server to release the allocated proces-
sors and they are returned to the pool. The PP nodes can
also be configured for LCPM model.

Distributed Computing Environment (DCE)
In DCE, each machine retains its own identity. i.e., user

can log into any machine and can access any other machine
in the network. Each node is a separate machine as in the
case of LCPM, but distributed tasks can be executed trans-
parently across the network on lightly loaded machines, which
is managed by the Resource Server. (See Figure 4.) It gives
the single system image for the user so that user tasks can be
compiled, loaded and executed any where on the network.
The results of the task are redirected to the user owned ma-
chine.

In DCE, user views the network as a loosely coupled clus-
ter of computers. A configuration file specifies which tasks
should be loaded on which logical nodes. In general, user
views DCE as a virtual machine. Resource Server in this case
is responsible for assigning the nodes for the user tasks
uniformly across the network. It maintains processor-load
table which maintains the most recent information of the load
of all the DCE processors. This table is periodically updated
by the load servers running on the  DCE machines. So that it
can assign lightly loaded machines evenly when resources
are requested.

Process Allocation and Synchronization

PARDISC server is responsible for process allocation in
all the above discussed models. It implements gang schedul-
ing, which guarantees simultaneous scheduling of parallel
applications over multiple processors on the network. This
implies that, processor allocation should be done for any
parallel application, only if all the tasks of a parallel applica-
tion can be loaded on the allocated nodes without fail. The
PARDISC server collects processor health status over a pe-
riodic interval of time from all the processors. If any one of
the allocated processor to an application happen to be dead
at any point of time, then all tasks of that application has to
be aborted. PARDISC server does this monitoring job, and in
case of error conditions it aborts the application and sends
the error notification message to the PARDISC loader.

The processor allocation is also based on priority. For
example, interactive jobs can be treated as high priority and
the batch jobs can be assigned low priorities. Priority assign-
ment are configurable. For example, priorities can be classi-
fied based on user groups, type of jobs, and other user speci-
fied parameters. Default processor allocation statergy is also
available for PPA and DCE models. If the number of proces-
sors or loading configuration information is not specified by
the user, then PARDISC server allocates processors less than
or equal to the default number of processors, which is given
in the system configuration file.



User Interface

To give the required transparency to the users, PARDISC
implements a set of user interfaces for load, control, and moni-
tor user applications.

In all the three models, pload (PARDISC loader) is sup-
ported to load the parallel and distributed applications on
PARDISC environment. Pload takes the configuration file as
the input. In LCPM, configuration file contains two part, config
and loading parts, whereas in the other two  models, the
configuration file contains only the loading part. DCE and
PPA supports a rich set of commands such as PARCPL (Par-
allel Compile), PARRUN (Parallel Run), PARMAKE (Parallel
Make), etc. to provide location transparent execution of the
user jobs (set of tasks). PARCPL transfers independent source
files to different nodes, which compiles and links the same
on those remote nodes and transfers the executable to the
owner machine. PARMAKE is used to build executable from
the multiple source files of the project. It is performed by
transferring each source file to a different node of DCE/PPA
and compiles the same on those remote nodes and transfers
the object files to the owner machine, which are in turn linked
to produce an executable on owner machine. PARRUN dis-
tributes user tasks across the network for execution.

Job control commands are supported to display the job/
task status, to suspend, to resume, and to kill the jobs or
tasks. Job statistics commands to collect the statistics of any
application over the network and monitoring commands to
trace the job activities, processor load and other information
are also supported.

4.   Process Communication Interface
Process Communication Interface (PCI) is a message pass-

ing interface of PARDISC supporting communication among
tasks in the loosely coupled parallel machine configuration.
The Application Program Interface (API) calls supported by
PCI are consistent irrespective of device specific communi-
cation protocols and hence provide the portability feature to
the PCI users. The functionality of the PCI is designed to
provide simpler and flexible syntax, and is based on current
common  practice, and is similar to that provided by widely
used message passing systems such as PVM [12], MPI [14],
etc. Unlike PVM and MPI interfaces, PCI interface  calls  are
particularly designed for PARDISC environment, where the
communication among the tasks are expressed using logical
node connectivity. API calls supported by PCI fall into fol-
lowing three categories.

�  Point-to-Point Communication,
�  Group Communication, and
�  Signal Passing.

All these interfaces are layered on top of basic primitives
PCI_Send() and PCI_Receive(). PCI supports both

synchronous (DELAY) and asynchronous (NO_DELAY)
modes of communication. The syntax of some of the impor-
tant PCI calls are listed below:
int PCI_Init();
int PCI_Send( ReceiverId,MsgPtr,Length,Mode );
int PCI_Receive( SenderId, MsgPtr, ExpectedLen,

Mode );
int PCI_GroupSend( MsgPtr, Length, Mode );
int PCI_SendSignal( ReceiverId, SignalId );

The logical task-ids used with PCI calls are the same as
those specified in the configuration file. The mapping of logi-
cal-ids to the physical address is performed by the PCI li-
brary with the help of per-group port topology table and it is
maintained by each tasks. PCI_Init() creates two ports,
one for sending the message and the other for receiving  the
message, and registers them with root (master) process (which
is assigned by the PARSISC loader) of its group, which then
builds the group port table of that group, and  multi-casts the
table to the group members. With this, every task can com-
municate with every other tasks of that group independently.

To support asynchronous communication, PCI library
maintains inbound queues to store the unposted receive
messages. The group communication calls support commu-
nication among the tasks of the same group (group-cast).
Signals can also be passed between tasks. Signals are send
to the load server of the destination node and it is delivered
to the target task, as local signal from the load server.

5.   Implementation Issues

The implementation of PARDISC version 1.0 is initiated
on a network of computers running SVR4 Unix operating
system. It aims at source-level compatibility across SVR4
Unix systems. It uses PCI as the message passing library
using TCP/IP sockets as a low level device specific protocol.
A multithreaded implementation of the PARDISC on
multithreaded operating systems, such as Solaris and Mach,
improves the performance.

6.   Conclusions

Since PARDISC supports parallel and distributed computing
with the existing network of computers, it can be used as a
developing  and testing environment  for the parallel and
distributed programs. In LCPM configuration, distributed
parallel algorithms like  distributed sorting, etc., can be de-
veloped and tested. Using DCE configuration, distributed
algorithms like clock synchronization algorithm, election al-
gorithms, etc., can be developed and tested. In PPA, both
parallel and distributed algorithms can be performed more
efficiently using the power of dedicated processors.

In LCPM mode of PARDISC, the programmer must divide
the computation among different tasks and use message pass-
ing facilities of PCI to control interaction among the concur-



rent tasks. It is suitable for both the data and process paral-
lelism [10]. Programmer need not worry about where the tasks
are loaded physically and how to communicate with them.

The three personalities of high performance computing,
LCPM, PPA, and DCE are integrated into the PARDISC to
realize a cost effective solution with zero extra hardware and
no modification to the operating system.

7.   Technical Support
We would be happy to provide technical support for the
implementors of PARDISC on various computing platforms.
Enquiries on implementation of  PARDISC on heterogeneous
platform are welcome.
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